Data Type Agnostic Visual Sensitivity Analysis

Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2023) vom: 03. Nov.
1. Verfasser: Piccolotto, Nikolaus (VerfasserIn)
Weitere Verfasser: Bogl, Markus, Muehlmann, Christoph, Nordhausen, Klaus, Filzmoser, Peter, Schmidt, Johanna, Miksch, Silvia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM364140275
003 DE-627
005 20241127233205.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3327203  |2 doi 
028 5 2 |a pubmed24n1614.xml 
035 |a (DE-627)NLM364140275 
035 |a (NLM)37922175 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Piccolotto, Nikolaus  |e verfasserin  |4 aut 
245 1 0 |a Data Type Agnostic Visual Sensitivity Analysis 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.11.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Modern science and industry rely on computational models for simulation, prediction, and data analysis. Spatial blind source separation (SBSS) is a model used to analyze spatial data. Designed explicitly for spatial data analysis, it is superior to popular non-spatial methods, like PCA. However, a challenge to its practical use is setting two complex tuning parameters, which requires parameter space analysis. In this paper, we focus on sensitivity analysis (SA). SBSS parameters and outputs are spatial data, which makes SA difficult as few SA approaches in the literature assume such complex data on both sides of the model. Based on the requirements in our design study with statistics experts, we developed a visual analytics prototype for data type agnostic visual sensitivity analysis that fits SBSS and other contexts. The main advantage of our approach is that it requires only dissimilarity measures for parameter settings and outputs (Fig. 1). We evaluated the prototype heuristically with visualization experts and through interviews with two SBSS experts. In addition, we show the transferability of our approach by applying it to microclimate simulations. Study participants could confirm suspected and known parameter-output relations, find surprising associations, and identify parameter subspaces to examine in the future. During our design study and evaluation, we identified challenging future research opportunities 
650 4 |a Journal Article 
700 1 |a Bogl, Markus  |e verfasserin  |4 aut 
700 1 |a Muehlmann, Christoph  |e verfasserin  |4 aut 
700 1 |a Nordhausen, Klaus  |e verfasserin  |4 aut 
700 1 |a Filzmoser, Peter  |e verfasserin  |4 aut 
700 1 |a Schmidt, Johanna  |e verfasserin  |4 aut 
700 1 |a Miksch, Silvia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2023) vom: 03. Nov.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:03  |g month:11 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3327203  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 03  |c 11