Multi-Level Content-Aware Boundary Detection for Temporal Action Proposal Generation

It is challenging to generate temporal action proposals from untrimmed videos. In general, boundary-based temporal action proposal generators are based on detecting temporal action boundaries, where a classifier is usually applied to evaluate the probability of each temporal action location. However...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 03., Seite 6090-6101
1. Verfasser: Su, Taiyi (VerfasserIn)
Weitere Verfasser: Wang, Hanli, Wang, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM364140186
003 DE-627
005 20231226094819.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3328471  |2 doi 
028 5 2 |a pubmed24n1213.xml 
035 |a (DE-627)NLM364140186 
035 |a (NLM)37922166 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Taiyi  |e verfasserin  |4 aut 
245 1 0 |a Multi-Level Content-Aware Boundary Detection for Temporal Action Proposal Generation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a It is challenging to generate temporal action proposals from untrimmed videos. In general, boundary-based temporal action proposal generators are based on detecting temporal action boundaries, where a classifier is usually applied to evaluate the probability of each temporal action location. However, most existing approaches treat boundaries and contents separately, which neglect that the context of actions and the temporal locations complement each other, resulting in incomplete modeling of boundaries and contents. In addition, temporal boundaries are often located by exploiting either local clues or global information, without mining local temporal information and temporal-to-temporal relations sufficiently at different levels. Facing these challenges, a novel approach named multi-level content-aware boundary detection (MCBD) is proposed to generate temporal action proposals from videos, which jointly models the boundaries and contents of actions and captures multi-level (i.e., frame level and proposal level) temporal and context information. Specifically, the proposed MCBD preliminarily mines rich frame-level features to generate one-dimensional probability sequences, and further exploits temporal-to-temporal proposal-level relations to produce two-dimensional probability maps. The final temporal action proposals are obtained by a fusion of the multi-level boundary and content probabilities, achieving precise boundaries and reliable confidence of proposals. The extensive experiments on the three benchmark datasets of THUMOS14, ActivityNet v1.3 and HACS demonstrate the effectiveness of the proposed MCBD compared to state-of-the-art methods. The source code of this work can be found in https://mic.tongji.edu.cn 
650 4 |a Journal Article 
700 1 |a Wang, Hanli  |e verfasserin  |4 aut 
700 1 |a Wang, Lei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 03., Seite 6090-6101  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:03  |g pages:6090-6101 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3328471  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 03  |h 6090-6101