LEADER 01000caa a22002652 4500
001 NLM363997032
003 DE-627
005 20241004231932.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1007/s10646-023-02706-y  |2 doi 
028 5 2 |a pubmed24n1557.xml 
035 |a (DE-627)NLM363997032 
035 |a (NLM)37907784 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sayers, Christopher J  |c 2nd  |e verfasserin  |4 aut 
245 1 0 |a Mercury in Neotropical birds  |b a synthesis and prospectus on 13 years of exposure data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.11.2023 
500 |a Date Revised 04.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023. The Author(s). 
520 |a Environmental mercury (Hg) contamination of the global tropics outpaces our understanding of its consequences for biodiversity. Knowledge gaps of pollution exposure could obscure conservation threats in the Neotropics: a region that supports over half of the world's species, but faces ongoing land-use change and Hg emission via artisanal and small-scale gold mining (ASGM). Due to their global distribution and sensitivity to pollution, birds provide a valuable opportunity as bioindicators to assess how accelerating Hg emissions impact an ecosystem's ability to support biodiversity, and ultimately, global health. We present the largest database on Neotropical bird Hg concentrations (n = 2316) and establish exposure baselines for 322 bird species spanning nine countries across Central America, South America, and the West Indies. Patterns of avian Hg exposure in the Neotropics broadly align with those in temperate regions: consistent bioaccumulation across functional groups and high spatiotemporal variation. Bird species occupying higher trophic positions and aquatic habitats exhibited elevated Hg concentrations that have been previously associated with reductions in reproductive success. Notably, bird Hg concentrations were over four times higher at sites impacted by ASGM activities and differed by season for certain trophic niches. We developed this synthesis via a collaborative research network, the Tropical Research for Avian Conservation and Ecotoxicology (TRACE) Initiative, which exemplifies inclusive, equitable, and international data-sharing. While our findings signal an urgent need to assess sampling biases, mechanisms, and consequences of Hg exposure to tropical avian communities, the TRACE Initiative provides a meaningful framework to achieve such goals. Ultimately, our collective efforts support and inform local, scientific, and government entities, including Parties of the United Nations Minamata Convention on Mercury, as we continue working together to understand how Hg pollution impacts biodiversity conservation, ecosystem function, and public health in the tropics 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Artisanal and small-scale gold mining 
650 4 |a Bioaccumulation 
650 4 |a Birds 
650 4 |a Mercury 
650 4 |a Neotropics 
650 7 |a Mercury  |2 NLM 
650 7 |a FXS1BY2PGL  |2 NLM 
650 7 |a Gold  |2 NLM 
650 7 |a 7440-57-5  |2 NLM 
700 1 |a Evers, David C  |e verfasserin  |4 aut 
700 1 |a Ruiz-Gutierrez, Viviana  |e verfasserin  |4 aut 
700 1 |a Adams, Evan  |e verfasserin  |4 aut 
700 1 |a Vega, Claudia M  |e verfasserin  |4 aut 
700 1 |a Pisconte, Jessica N  |e verfasserin  |4 aut 
700 1 |a Tejeda, Vania  |e verfasserin  |4 aut 
700 1 |a Regan, Kevin  |e verfasserin  |4 aut 
700 1 |a Lane, Oksana P  |e verfasserin  |4 aut 
700 1 |a Ash, Abidas A  |e verfasserin  |4 aut 
700 1 |a Cal, Reynold  |e verfasserin  |4 aut 
700 1 |a Reneau, Stevan  |e verfasserin  |4 aut 
700 1 |a Martínez, Wilber  |e verfasserin  |4 aut 
700 1 |a Welch, Gilroy  |e verfasserin  |4 aut 
700 1 |a Hartwell, Kayla  |e verfasserin  |4 aut 
700 1 |a Teul, Mario  |e verfasserin  |4 aut 
700 1 |a Tzul, David  |e verfasserin  |4 aut 
700 1 |a Arendt, Wayne J  |e verfasserin  |4 aut 
700 1 |a Tórrez, Marvin A  |e verfasserin  |4 aut 
700 1 |a Watsa, Mrinalini  |e verfasserin  |4 aut 
700 1 |a Erkenswick, Gideon  |e verfasserin  |4 aut 
700 1 |a Moore, Caroline E  |e verfasserin  |4 aut 
700 1 |a Gerson, Jacqueline  |e verfasserin  |4 aut 
700 1 |a Sánchez, Victor  |e verfasserin  |4 aut 
700 1 |a Purizaca, Raúl Pérez  |e verfasserin  |4 aut 
700 1 |a Yurek, Helen  |e verfasserin  |4 aut 
700 1 |a Burton, Mark E H  |e verfasserin  |4 aut 
700 1 |a Shrum, Peggy L  |e verfasserin  |4 aut 
700 1 |a Tabares-Segovia, Sebastian  |e verfasserin  |4 aut 
700 1 |a Vargas, Korik  |e verfasserin  |4 aut 
700 1 |a Fogarty, Finola F  |e verfasserin  |4 aut 
700 1 |a Charette, Mathieu R  |e verfasserin  |4 aut 
700 1 |a Martínez, Ari E  |e verfasserin  |4 aut 
700 1 |a Bernhardt, Emily S  |e verfasserin  |4 aut 
700 1 |a Taylor, Robert J  |e verfasserin  |4 aut 
700 1 |a Tear, Timothy H  |e verfasserin  |4 aut 
700 1 |a Fernandez, Luis E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecotoxicology (London, England)  |d 1992  |g 32(2023), 8 vom: 19. Okt., Seite 1096-1123  |w (DE-627)NLM098212214  |x 1573-3017  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g number:8  |g day:19  |g month:10  |g pages:1096-1123 
856 4 0 |u http://dx.doi.org/10.1007/s10646-023-02706-y  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_65 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |e 8  |b 19  |c 10  |h 1096-1123