Contrastive Transformer Hashing for Compact Video Representation

Video hashing learns compact representation by mapping video into low-dimensional Hamming space and has achieved promising performance in large-scale video retrieval. It is challenging to effectively exploit temporal and spatial structure in an unsupervised setting. To fulfill this gap, this paper p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 30., Seite 5992-6003
1. Verfasser: Shen, Xiaobo (VerfasserIn)
Weitere Verfasser: Zhou, Yue, Yuan, Yun-Hao, Yang, Xichen, Lan, Long, Zheng, Yuhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363950540
003 DE-627
005 20231226094428.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3326994  |2 doi 
028 5 2 |a pubmed24n1213.xml 
035 |a (DE-627)NLM363950540 
035 |a (NLM)37903046 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shen, Xiaobo  |e verfasserin  |4 aut 
245 1 0 |a Contrastive Transformer Hashing for Compact Video Representation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Video hashing learns compact representation by mapping video into low-dimensional Hamming space and has achieved promising performance in large-scale video retrieval. It is challenging to effectively exploit temporal and spatial structure in an unsupervised setting. To fulfill this gap, this paper proposes Contrastive Transformer Hashing (CTH) for effective video retrieval. Specifically, CTH develops a bidirectional transformer autoencoder, based on which visual reconstruction loss is proposed. CTH is more powerful to capture bidirectional correlations among frames than conventional unidirectional models. In addition, CTH devises multi-modality contrastive loss to reveal intrinsic structure among videos. CTH constructs inter-modality and intra-modality triplet sets and proposes multi-modality contrastive loss to exploit inter-modality and intra-modality similarities simultaneously. We perform video retrieval tasks on four benchmark datasets, i.e., UCF101, HMDB51, SVW30, FCVID using the learned compact hash representation, and extensive empirical results demonstrate the proposed CTH outperforms several state-of-the-art video hashing methods 
650 4 |a Journal Article 
700 1 |a Zhou, Yue  |e verfasserin  |4 aut 
700 1 |a Yuan, Yun-Hao  |e verfasserin  |4 aut 
700 1 |a Yang, Xichen  |e verfasserin  |4 aut 
700 1 |a Lan, Long  |e verfasserin  |4 aut 
700 1 |a Zheng, Yuhui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 30., Seite 5992-6003  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:30  |g pages:5992-6003 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3326994  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 30  |h 5992-6003