|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM363950540 |
003 |
DE-627 |
005 |
20231226094428.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3326994
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1213.xml
|
035 |
|
|
|a (DE-627)NLM363950540
|
035 |
|
|
|a (NLM)37903046
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Shen, Xiaobo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Contrastive Transformer Hashing for Compact Video Representation
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Video hashing learns compact representation by mapping video into low-dimensional Hamming space and has achieved promising performance in large-scale video retrieval. It is challenging to effectively exploit temporal and spatial structure in an unsupervised setting. To fulfill this gap, this paper proposes Contrastive Transformer Hashing (CTH) for effective video retrieval. Specifically, CTH develops a bidirectional transformer autoencoder, based on which visual reconstruction loss is proposed. CTH is more powerful to capture bidirectional correlations among frames than conventional unidirectional models. In addition, CTH devises multi-modality contrastive loss to reveal intrinsic structure among videos. CTH constructs inter-modality and intra-modality triplet sets and proposes multi-modality contrastive loss to exploit inter-modality and intra-modality similarities simultaneously. We perform video retrieval tasks on four benchmark datasets, i.e., UCF101, HMDB51, SVW30, FCVID using the learned compact hash representation, and extensive empirical results demonstrate the proposed CTH outperforms several state-of-the-art video hashing methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Zhou, Yue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yuan, Yun-Hao
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Xichen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lan, Long
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Yuhui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 32(2023) vom: 30., Seite 5992-6003
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2023
|g day:30
|g pages:5992-6003
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3326994
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2023
|b 30
|h 5992-6003
|