Causality-Based Visual Analysis of Questionnaire Responses

As the final stage of questionnaire analysis, causal reasoning is the key to turning responses into valuable insights and actionable items for decision-makers. During the questionnaire analysis, classical statistical methods (e.g., Differences-in-Differences) have been widely exploited to evaluate c...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 30. Jan., Seite 638-648
1. Verfasser: Li, Renzhong (VerfasserIn)
Weitere Verfasser: Cui, Weiwei, Song, Tianqi, Xie, Xiao, Ding, Rui, Wang, Yun, Zhang, Haidong, Zhou, Hong, Wu, Yingcai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM363950486
003 DE-627
005 20250305095020.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3327376  |2 doi 
028 5 2 |a pubmed25n1212.xml 
035 |a (DE-627)NLM363950486 
035 |a (NLM)37903040 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Renzhong  |e verfasserin  |4 aut 
245 1 0 |a Causality-Based Visual Analysis of Questionnaire Responses 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.12.2023 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a As the final stage of questionnaire analysis, causal reasoning is the key to turning responses into valuable insights and actionable items for decision-makers. During the questionnaire analysis, classical statistical methods (e.g., Differences-in-Differences) have been widely exploited to evaluate causality between questions. However, due to the huge search space and complex causal structure in data, causal reasoning is still extremely challenging and time-consuming, and often conducted in a trial-and-error manner. On the other hand, existing visual methods of causal reasoning face the challenge of bringing scalability and expert knowledge together and can hardly be used in the questionnaire scenario. In this work, we present a systematic solution to help analysts effectively and efficiently explore questionnaire data and derive causality. Based on the association mining algorithm, we dig question combinations with potential inner causality and help analysts interactively explore the causal sub-graph of each question combination. Furthermore, leveraging the requirements collected from the experts, we built a visualization tool and conducted a comparative study with the state-of-the-art system to show the usability and efficiency of our system 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Cui, Weiwei  |e verfasserin  |4 aut 
700 1 |a Song, Tianqi  |e verfasserin  |4 aut 
700 1 |a Xie, Xiao  |e verfasserin  |4 aut 
700 1 |a Ding, Rui  |e verfasserin  |4 aut 
700 1 |a Wang, Yun  |e verfasserin  |4 aut 
700 1 |a Zhang, Haidong  |e verfasserin  |4 aut 
700 1 |a Zhou, Hong  |e verfasserin  |4 aut 
700 1 |a Wu, Yingcai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 1 vom: 30. Jan., Seite 638-648  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:30  |g month:01  |g pages:638-648 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3327376  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 30  |c 01  |h 638-648