Fast Adversarial Training With Adaptive Step Size

While adversarial training and its variants have shown to be the most effective algorithms to defend against adversarial attacks, their extremely slow training process makes it hard to scale to large datasets like ImageNet. The key idea of recent works to accelerate adversarial training is to substi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 26., Seite 6102-6114
1. Verfasser: Huang, Zhichao (VerfasserIn)
Weitere Verfasser: Fan, Yanbo, Liu, Chen, Zhang, Weizhong, Zhang, Yong, Salzmann, Mathieu, Susstrunk, Sabine, Wang, Jue
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363754105
003 DE-627
005 20231226094022.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3326398  |2 doi 
028 5 2 |a pubmed24n1212.xml 
035 |a (DE-627)NLM363754105 
035 |a (NLM)37883291 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Zhichao  |e verfasserin  |4 aut 
245 1 0 |a Fast Adversarial Training With Adaptive Step Size 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a While adversarial training and its variants have shown to be the most effective algorithms to defend against adversarial attacks, their extremely slow training process makes it hard to scale to large datasets like ImageNet. The key idea of recent works to accelerate adversarial training is to substitute multi-step attacks (e.g., PGD) with single-step attacks (e.g., FGSM). However, these single-step methods suffer from catastrophic overfitting, where the accuracy against PGD attack suddenly drops to nearly 0% during training, and the network totally loses its robustness. In this work, we study the phenomenon from the perspective of training instances. We show that catastrophic overfitting is instance-dependent, and fitting instances with larger input gradient norm is more likely to cause catastrophic overfitting. Based on our findings, we propose a simple but effective method, Adversarial Training with Adaptive Step size (ATAS). ATAS learns an instance-wise adaptive step size that is inversely proportional to its gradient norm. Our theoretical analysis shows that ATAS converges faster than the commonly adopted non-adaptive counterparts. Empirically, ATAS consistently mitigates catastrophic overfitting and achieves higher robust accuracy on CIFAR10, CIFAR100, and ImageNet when evaluated on various adversarial budgets. Our code is released at https://github.com/HuangZhiChao95/ATAS 
650 4 |a Journal Article 
700 1 |a Fan, Yanbo  |e verfasserin  |4 aut 
700 1 |a Liu, Chen  |e verfasserin  |4 aut 
700 1 |a Zhang, Weizhong  |e verfasserin  |4 aut 
700 1 |a Zhang, Yong  |e verfasserin  |4 aut 
700 1 |a Salzmann, Mathieu  |e verfasserin  |4 aut 
700 1 |a Susstrunk, Sabine  |e verfasserin  |4 aut 
700 1 |a Wang, Jue  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 26., Seite 6102-6114  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:26  |g pages:6102-6114 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3326398  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 26  |h 6102-6114