Vimo - Visual Analysis of Neuronal Connectivity Motifs

Recent advances in high-resolution connectomics provide researchers with access to accurate petascale reconstructions of neuronal circuits and brain networks for the first time. Neuroscientists are analyzing these networks to better understand information processing in the brain. In particular, scie...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2023) vom: 26. Okt.
1. Verfasser: Troidl, Jakob (VerfasserIn)
Weitere Verfasser: Warchol, Simon, Choi, Jinhan, Matelsky, Jordan, Dhanyasi, Nagaraju, Wang, Xueying, Wester, Brock, Wei, Donglai, Lichtman, Jeff W, Pfister, Hanspeter, Beyer, Johanna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM363753982
003 DE-627
005 20241209231857.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3327388  |2 doi 
028 5 2 |a pubmed24n1626.xml 
035 |a (DE-627)NLM363753982 
035 |a (NLM)37883279 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Troidl, Jakob  |e verfasserin  |4 aut 
245 1 0 |a Vimo - Visual Analysis of Neuronal Connectivity Motifs 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.12.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Recent advances in high-resolution connectomics provide researchers with access to accurate petascale reconstructions of neuronal circuits and brain networks for the first time. Neuroscientists are analyzing these networks to better understand information processing in the brain. In particular, scientists are interested in identifying specific small network motifs, i.e., repeating subgraphs of the larger brain network that are believed to be neuronal building blocks. Although such motifs are typically small (e.g., 2 - 6 neurons), the vast data sizes and intricate data complexity present significant challenges to the search and analysis process. To analyze these motifs, it is crucial to review instances of a motif in the brain network and then map the graph structure to detailed 3D reconstructions of the involved neurons and synapses. We present Vimo, an interactive visual approach to analyze neuronal motifs and motif chains in large brain networks. Experts can sketch network motifs intuitively in a visual interface and specify structural properties of the involved neurons and synapses to query large connectomics datasets. Motif instances (MIs) can be explored in high-resolution 3D renderings. To simplify the analysis of MIs, we designed a continuous focus&context metaphor inspired by visual abstractions. This allows users to transition from a highly-detailed rendering of the anatomical structure to views that emphasize the underlying motif structure and synaptic connectivity. Furthermore, Vimo supports the identification of motif chains where a motif is used repeatedly (e.g., 2 - 4 times) to form a larger network structure. We evaluate Vimo in a user study and an in-depth case study with seven domain experts on motifs in a large connectome of the fruit fly, including more than 21,000 neurons and 20 million synapses. We find that Vimo enables hypothesis generation and confirmation through fast analysis iterations and connectivity highlighting 
650 4 |a Journal Article 
700 1 |a Warchol, Simon  |e verfasserin  |4 aut 
700 1 |a Choi, Jinhan  |e verfasserin  |4 aut 
700 1 |a Matelsky, Jordan  |e verfasserin  |4 aut 
700 1 |a Dhanyasi, Nagaraju  |e verfasserin  |4 aut 
700 1 |a Wang, Xueying  |e verfasserin  |4 aut 
700 1 |a Wester, Brock  |e verfasserin  |4 aut 
700 1 |a Wei, Donglai  |e verfasserin  |4 aut 
700 1 |a Lichtman, Jeff W  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
700 1 |a Beyer, Johanna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2023) vom: 26. Okt.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:26  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3327388  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 26  |c 10