Cation Defect-Engineered Boost Fast Kinetics of Two-Dimensional Topological Bi2 Se3 Cathode for High-Performance Aqueous Zn-Ion Batteries
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 51 vom: 26. Dez., Seite e2306269 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2023
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article cathodes cation defect in situ synchrotron X-ray diffraction two-dimensional bismuth selenide zinc ion batteries |
Zusammenfassung: | © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. The challenge with aqueous zinc-ion batteries (ZIBs) lies in finding suitable cathode materials that can provide high capacity and fast kinetics. Herein, two-dimensional topological Bi2 Se3 with acceptable Bi-vacancies for ZIBs cathode (Cu-Bi2-x Se3 ) is constructed through one-step hydrothermal process accompanied by Cu heteroatom introduction. The cation-deficient Cu-Bi2-x Se3 nanosheets (≈4 nm) bring improved conductivity from large surface topological metal states contribution and enhanced bulk conductivity. Besides, the increased adsorption energy and reduced Zn2+ migration barrier demonstrated by density-functional theory (DFT) calculations illustrate the decreased Coulombic ion-lattice repulsion of Cu-Bi2-x Se3 . Therefore, Cu-Bi2-x Se3 exhibits both enhanced ion and electron transport capability, leading to more carrier reversible insertion proved by in situ synchrotron X-ray diffraction (SXRD). These features endow Cu-Bi2-x Se3 with sufficient specific capacity (320 mA h g-1 at 0.1 A g-1 ), high-rate performance (97 mA h g-1 at 10 A g-1 ), and reliable cycling stability (70 mA h g-1 at 10 A g-1 after 4000 cycles). Furthermore, quasi-solid-state fiber-shaped ZIBs employing the Cu-Bi2-x Se3 cathode demonstrate respectable performance and superior flexibility even under high mass loading. This work implements a conceptually innovative strategy represented by cation defect design in topological insulator cathode for achieving high-performance battery electrochemistry |
---|---|
Beschreibung: | Date Revised 21.12.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202306269 |