Calliope-Net : Automatic Generation of Graph Data Facts via Annotated Node-Link Diagrams

Graph or network data are widely studied in both data mining and visualization communities to review the relationship among different entities and groups. The data facts derived from graph visual analysis are important to help understand the social structures of complex data, especially for data jou...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 24. Jan., Seite 562-572
1. Verfasser: Chen, Qing (VerfasserIn)
Weitere Verfasser: Chen, Nan, Shuai, Wei, Wu, Guande, Xu, Zhe, Tong, Hanghang, Cao, Nan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM363669906
003 DE-627
005 20250305091603.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326925  |2 doi 
028 5 2 |a pubmed25n1211.xml 
035 |a (DE-627)NLM363669906 
035 |a (NLM)37874720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Qing  |e verfasserin  |4 aut 
245 1 0 |a Calliope-Net  |b Automatic Generation of Graph Data Facts via Annotated Node-Link Diagrams 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph or network data are widely studied in both data mining and visualization communities to review the relationship among different entities and groups. The data facts derived from graph visual analysis are important to help understand the social structures of complex data, especially for data journalism. However, it is challenging for data journalists to discover graph data facts and manually organize correlated facts around a meaningful topic due to the complexity of graph data and the difficulty to interpret graph narratives. Therefore, we present an automatic graph facts generation system, Calliope-Net, which consists of a fact discovery module, a fact organization module, and a visualization module. It creates annotated node-link diagrams with facts automatically discovered and organized from network data. A novel layout algorithm is designed to present meaningful and visually appealing annotated graphs. We evaluate the proposed system with two case studies and an in-lab user study. The results show that Calliope-Net can benefit users in discovering and understanding graph data facts with visually pleasing annotated visualizations 
650 4 |a Journal Article 
700 1 |a Chen, Nan  |e verfasserin  |4 aut 
700 1 |a Shuai, Wei  |e verfasserin  |4 aut 
700 1 |a Wu, Guande  |e verfasserin  |4 aut 
700 1 |a Xu, Zhe  |e verfasserin  |4 aut 
700 1 |a Tong, Hanghang  |e verfasserin  |4 aut 
700 1 |a Cao, Nan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 1 vom: 24. Jan., Seite 562-572  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:24  |g month:01  |g pages:562-572 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326925  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 24  |c 01  |h 562-572