SkiVis : Visual Exploration and Route Planning in Ski Resorts

Optimal ski route selection is a challenge based on a multitude of factors, such as the steepness, compass direction, or crowdedness. The personal preferences of every skier towards these factors require individual adaptations, which aggravate this task. Current approaches within this domain do not...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2023), 1 vom: 24. Jan., Seite 869-879
1. Verfasser: Rauscher, Julius (VerfasserIn)
Weitere Verfasser: Buchmuller, Raphael, Keim, Daniel A, Miller, Matthias
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Optimal ski route selection is a challenge based on a multitude of factors, such as the steepness, compass direction, or crowdedness. The personal preferences of every skier towards these factors require individual adaptations, which aggravate this task. Current approaches within this domain do not combine automated routing capabilities with user preferences, missing out on the possibility of integrating domain knowledge in the analysis process. We introduce SkiVis, a visual analytics application to interactively explore ski slopes and provide routing recommendations based on user preferences. In collaboration with ski guides and enthusiasts, we elicited requirements and guidelines for such an application and propose different workflows depending on the skiers' familiarity with the resort. In a case study on the resort of Ski Arlberg, we illustrate how to leverage volunteered geographic information to enable a numerical comparison between slopes. We evaluated our approach through a pair-analytics study and demonstrate how it supports skiers in discovering relevant and preference-based ski routes. Besides the tasks investigated in the study, we derive additional use cases from the interviews that showcase the further potential of SkiVis, and contribute directions for further research opportunities
Beschreibung:Date Revised 27.12.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0506
DOI:10.1109/TVCG.2023.3326940