Marjorie : Visualizing Type 1 Diabetes Data to Support Pattern Exploration

In this work we propose Marjorie, a visual analytics approach to address the challenge of analyzing patients' diabetes data during brief regular appointments with their diabetologists. Designed in consultation with diabetologists, Marjorie uses a combination of visual and algorithmic methods to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 13. Jan., Seite 1216-1226
1. Verfasser: Scimone, Anna (VerfasserIn)
Weitere Verfasser: Eckelt, Klaus, Streit, Marc, Hinterreiter, Andreas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Insulin Glucose IY9XDZ35W2
LEADER 01000caa a22002652c 4500
001 NLM363669809
003 DE-627
005 20250305091602.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326936  |2 doi 
028 5 2 |a pubmed25n1211.xml 
035 |a (DE-627)NLM363669809 
035 |a (NLM)37874710 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Scimone, Anna  |e verfasserin  |4 aut 
245 1 0 |a Marjorie  |b Visualizing Type 1 Diabetes Data to Support Pattern Exploration 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.12.2023 
500 |a Date Revised 06.01.2025 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a In this work we propose Marjorie, a visual analytics approach to address the challenge of analyzing patients' diabetes data during brief regular appointments with their diabetologists. Designed in consultation with diabetologists, Marjorie uses a combination of visual and algorithmic methods to support the exploration of patterns in the data. Patterns of interest include seasonal variations of the glucose profiles, and non-periodic patterns such as fluctuations around mealtimes or periods of hypoglycemia (i.e., glucose levels below the normal range). We introduce a unique representation of glucose data based on modified horizon graphs and hierarchical clustering of adjacent carbohydrate or insulin entries. Semantic zooming allows the exploration of patterns on different levels of temporal detail. We evaluated our solution in a case study, which demonstrated Marjorie's potential to provide valuable insights into therapy parameters and unfavorable eating habits, among others. The study results and informal feedback collected from target users suggest that Marjorie effectively supports patients and diabetologists in the joint exploration of patterns in diabetes data, potentially enabling more informed treatment decisions. A free copy of this paper and all supplemental materials are available at https://osf.io/34t8c/ 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Insulin  |2 NLM 
650 7 |a Glucose  |2 NLM 
650 7 |a IY9XDZ35W2  |2 NLM 
700 1 |a Eckelt, Klaus  |e verfasserin  |4 aut 
700 1 |a Streit, Marc  |e verfasserin  |4 aut 
700 1 |a Hinterreiter, Andreas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 1 vom: 13. Jan., Seite 1216-1226  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:13  |g month:01  |g pages:1216-1226 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 13  |c 01  |h 1216-1226