Average Estimates in Line Graphs Are Biased Toward Areas of Higher Variability

We investigate variability overweighting, a previously undocumented bias in line graphs, where estimates of average value are biased toward areas of higher variability in that line. We found this effect across two preregistered experiments with 140 and 420 participants. These experiments also show t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2023), 1 vom: 23. Jan., Seite 306-315
1. Verfasser: Moritz, Dominik (VerfasserIn)
Weitere Verfasser: Padilla, Lace M, Nguyen, Francis, Franconeri, Steven L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM363633901
003 DE-627
005 20231229123907.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326589  |2 doi 
028 5 2 |a pubmed24n1240.xml 
035 |a (DE-627)NLM363633901 
035 |a (NLM)37871088 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Moritz, Dominik  |e verfasserin  |4 aut 
245 1 0 |a Average Estimates in Line Graphs Are Biased Toward Areas of Higher Variability 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We investigate variability overweighting, a previously undocumented bias in line graphs, where estimates of average value are biased toward areas of higher variability in that line. We found this effect across two preregistered experiments with 140 and 420 participants. These experiments also show that the bias is reduced when using a dot encoding of the same series. We can model the bias with the average of the data series and the average of the points drawn along the line. This bias might arise because higher variability leads to stronger weighting in the average calculation, either due to the longer line segments (even though those segments contain the same number of data values) or line segments with higher variability being otherwise more visually salient. Understanding and predicting this bias is important for visualization design guidelines, recommendation systems, and tool builders, as the bias can adversely affect estimates of averages and trends 
650 4 |a Journal Article 
700 1 |a Padilla, Lace M  |e verfasserin  |4 aut 
700 1 |a Nguyen, Francis  |e verfasserin  |4 aut 
700 1 |a Franconeri, Steven L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2023), 1 vom: 23. Jan., Seite 306-315  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2023  |g number:1  |g day:23  |g month:01  |g pages:306-315 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326589  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2023  |e 1  |b 23  |c 01  |h 306-315