ExTreeM : Scalable Augmented Merge Tree Computation via Extremum Graphs
Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: A scalable algorithm for the computation of merge trees via extremum graphs. The core idea of ExTr...
Veröffentlicht in: | IEEE transactions on visualization and computer graphics. - 1996. - 30(2023), 1 vom: 23. Jan., Seite 1085-1094 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on visualization and computer graphics |
Schlagworte: | Journal Article |
Zusammenfassung: | Over the last decade merge trees have been proven to support a plethora of visualization and analysis tasks since they effectively abstract complex datasets. This paper describes the ExTreeM-Algorithm: A scalable algorithm for the computation of merge trees via extremum graphs. The core idea of ExTreeM is to first derive the extremum graph G of an input scalar field f defined on a cell complex K, and subsequently compute the unaugmented merge tree of f on G instead of K; which are equivalent. Any merge tree algorithm can be carried out significantly faster on G, since K in general contains substantially more cells than G. To further speed up computation, ExTreeM includes a tailored procedure to derive merge trees of extremum graphs. The computation of the fully augmented merge tree, i.e., a merge tree domain segmentation of K, can then be performed in an optional post-processing step. All steps of ExTreeM consist of procedures with high parallel efficiency, and we provide a formal proof of its correctness. Our experiments, performed on publicly available datasets, report a speedup of up to one order of magnitude over the state-of-the-art algorithms included in the TTK and VTK-m software libraries, while also requiring significantly less memory and exhibiting excellent scaling behavior |
---|---|
Beschreibung: | Date Revised 27.12.2023 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1941-0506 |
DOI: | 10.1109/TVCG.2023.3326526 |