MeTACAST : Target- and Context-Aware Spatial Selection in VR

We propose three novel spatial data selection techniques for particle data in VR visualization environments. They are designed to be target- and context-aware and be suitable for a wide range of data features and complex scenarios. Each technique is designed to be adjusted to particular selection in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2023), 1 vom: 23. Jan., Seite 480-494
1. Verfasser: Zhao, Lixiang (VerfasserIn)
Weitere Verfasser: Isenberg, Tobias, Xie, Fuqi, Liang, Hai-Ning, Yu, Lingyun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM363633820
003 DE-627
005 20231229123907.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326517  |2 doi 
028 5 2 |a pubmed24n1240.xml 
035 |a (DE-627)NLM363633820 
035 |a (NLM)37871080 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhao, Lixiang  |e verfasserin  |4 aut 
245 1 0 |a MeTACAST  |b Target- and Context-Aware Spatial Selection in VR 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose three novel spatial data selection techniques for particle data in VR visualization environments. They are designed to be target- and context-aware and be suitable for a wide range of data features and complex scenarios. Each technique is designed to be adjusted to particular selection intents: the selection of consecutive dense regions, the selection of filament-like structures, and the selection of clusters-with all of them facilitating post-selection threshold adjustment. These techniques allow users to precisely select those regions of space for further exploration-with simple and approximate 3D pointing, brushing, or drawing input-using flexible point- or path-based input and without being limited by 3D occlusions, non-homogeneous feature density, or complex data shapes. These new techniques are evaluated in a controlled experiment and compared with the Baseline method, a region-based 3D painting selection. Our results indicate that our techniques are effective in handling a wide range of scenarios and allow users to select data based on their comprehension of crucial features. Furthermore, we analyze the attributes, requirements, and strategies of our spatial selection methods and compare them with existing state-of-the-art selection methods to handle diverse data features and situations. Based on this analysis we provide guidelines for choosing the most suitable 3D spatial selection techniques based on the interaction environment, the given data characteristics, or the need for interactive post-selection threshold adjustment 
650 4 |a Journal Article 
700 1 |a Isenberg, Tobias  |e verfasserin  |4 aut 
700 1 |a Xie, Fuqi  |e verfasserin  |4 aut 
700 1 |a Liang, Hai-Ning  |e verfasserin  |4 aut 
700 1 |a Yu, Lingyun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2023), 1 vom: 23. Jan., Seite 480-494  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2023  |g number:1  |g day:23  |g month:01  |g pages:480-494 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326517  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2023  |e 1  |b 23  |c 01  |h 480-494