InvVis : Large-Scale Data Embedding for Invertible Visualization

We present InvVis, a new approach for invertible visualization, which is reconstructing or further modifying a visualization from an image. InvVis allows the embedding of a significant amount of data, such as chart data, chart information, source code, etc., into visualization images. The encoded im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2023), 1 vom: 23. Jan., Seite 1139-1149
1. Verfasser: Ye, Huayuan (VerfasserIn)
Weitere Verfasser: Li, Chenhui, Li, Yang, Wang, Changbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM36363374X
003 DE-627
005 20231229123907.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326597  |2 doi 
028 5 2 |a pubmed24n1240.xml 
035 |a (DE-627)NLM36363374X 
035 |a (NLM)37871072 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Huayuan  |e verfasserin  |4 aut 
245 1 0 |a InvVis  |b Large-Scale Data Embedding for Invertible Visualization 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present InvVis, a new approach for invertible visualization, which is reconstructing or further modifying a visualization from an image. InvVis allows the embedding of a significant amount of data, such as chart data, chart information, source code, etc., into visualization images. The encoded image is perceptually indistinguishable from the original one. We propose a new method to efficiently express chart data in the form of images, enabling large-capacity data embedding. We also outline a model based on the invertible neural network to achieve high-quality data concealing and revealing. We explore and implement a variety of application scenarios of InvVis. Additionally, we conduct a series of evaluation experiments to assess our method from multiple perspectives, including data embedding quality, data restoration accuracy, data encoding capacity, etc. The result of our experiments demonstrates the great potential of InvVis in invertible visualization 
650 4 |a Journal Article 
700 1 |a Li, Chenhui  |e verfasserin  |4 aut 
700 1 |a Li, Yang  |e verfasserin  |4 aut 
700 1 |a Wang, Changbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2023), 1 vom: 23. Jan., Seite 1139-1149  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:30  |g year:2023  |g number:1  |g day:23  |g month:01  |g pages:1139-1149 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326597  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2023  |e 1  |b 23  |c 01  |h 1139-1149