OW-Adapter : Human-Assisted Open-World Object Detection with a Few Examples

Open-world object detection (OWOD) is an emerging computer vision problem that involves not only the identification of predefined object classes, like what general object detectors do, but also detects new unknown objects simultaneously. Recently, several end-to-end deep learning models have been pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 30(2024), 1 vom: 23. Jan., Seite 694-704
1. Verfasser: Jamonnak, Suphanut (VerfasserIn)
Weitere Verfasser: Guo, Jiajing, He, Wenbin, Gou, Liang, Ren, Liu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM363633731
003 DE-627
005 20250305091131.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326577  |2 doi 
028 5 2 |a pubmed25n1211.xml 
035 |a (DE-627)NLM363633731 
035 |a (NLM)37871071 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jamonnak, Suphanut  |e verfasserin  |4 aut 
245 1 0 |a OW-Adapter  |b Human-Assisted Open-World Object Detection with a Few Examples 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Open-world object detection (OWOD) is an emerging computer vision problem that involves not only the identification of predefined object classes, like what general object detectors do, but also detects new unknown objects simultaneously. Recently, several end-to-end deep learning models have been proposed to address the OWOD problem. However, these approaches face several challenges: a) significant changes in both network architecture and training procedure are required; b) they are trained from scratch, which can not leverage existing pre-trained general detectors; c) costly annotations for all unknown classes are needed. To overcome these challenges, we present a visual analytic framework called OW-Adapter. It acts as an adaptor to enable pre-trained general object detectors to handle the OWOD problem. Specifically, OW-Adapter is designed to identify, summarize, and annotate unknown examples with minimal human effort. Moreover, we introduce a lightweight classifier to learn newly annotated unknown classes and plug the classifier into pre-trained general detectors to detect unknown objects. We demonstrate the effectiveness of our framework through two case studies of different domains, including common object recognition and autonomous driving. The studies show that a simple yet powerful adaptor can extend the capability of pre-trained general detectors to detect unknown objects and improve the performance on known classes simultaneously 
650 4 |a Journal Article 
700 1 |a Guo, Jiajing  |e verfasserin  |4 aut 
700 1 |a He, Wenbin  |e verfasserin  |4 aut 
700 1 |a Gou, Liang  |e verfasserin  |4 aut 
700 1 |a Ren, Liu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 30(2024), 1 vom: 23. Jan., Seite 694-704  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:30  |g year:2024  |g number:1  |g day:23  |g month:01  |g pages:694-704 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326577  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2024  |e 1  |b 23  |c 01  |h 694-704