Too Many Cooks : Exploring How Graphical Perception Studies Influence Visualization Recommendations in Draco

Findings from graphical perception can guide visualization recommendation algorithms in identifying effective visualization designs. However, existing algorithms use knowledge from, at best, a few studies, limiting our understanding of how complementary (or contradictory) graphical perception result...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - PP(2023) vom: 23. Okt.
1. Verfasser: Zeng, Zehua (VerfasserIn)
Weitere Verfasser: Yang, Junran, Moritz, Dominik, Heer, Jeffrey, Battle, Leilani
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363633553
003 DE-627
005 20231226093753.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3326527  |2 doi 
028 5 2 |a pubmed24n1212.xml 
035 |a (DE-627)NLM363633553 
035 |a (NLM)37871053 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zeng, Zehua  |e verfasserin  |4 aut 
245 1 0 |a Too Many Cooks  |b Exploring How Graphical Perception Studies Influence Visualization Recommendations in Draco 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Findings from graphical perception can guide visualization recommendation algorithms in identifying effective visualization designs. However, existing algorithms use knowledge from, at best, a few studies, limiting our understanding of how complementary (or contradictory) graphical perception results influence generated recommendations. In this paper, we present a pipeline of applying a large body of graphical perception results to develop new visualization recommendation algorithms and conduct an exploratory study to investigate how results from graphical perception can alter the behavior of downstream algorithms. Specifically, we model graphical perception results from 30 papers in Draco-a framework to model visualization knowledge-to develop new recommendation algorithms. By analyzing Draco-generated algorithms, we showcase the feasibility of our method to (1) identify gaps in existing graphical perception literature informing recommendation algorithms, (2) cluster papers by their preferred design rules and constraints, and (3) investigate why certain studies can dominate Draco's recommendations, whereas others may have little influence. Given our findings, we discuss the potential for mutually reinforcing advancements in graphical perception and visualization recommendation research 
650 4 |a Journal Article 
700 1 |a Yang, Junran  |e verfasserin  |4 aut 
700 1 |a Moritz, Dominik  |e verfasserin  |4 aut 
700 1 |a Heer, Jeffrey  |e verfasserin  |4 aut 
700 1 |a Battle, Leilani  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g PP(2023) vom: 23. Okt.  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnns 
773 1 8 |g volume:PP  |g year:2023  |g day:23  |g month:10 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3326527  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2023  |b 23  |c 10