Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 2 vom: 19. Jan., Seite e2306724
1. Verfasser: Su, Hang (VerfasserIn)
Weitere Verfasser: Xu, Zhuo, He, Xilai, Yao, Yuying, Zheng, Xinxin, She, Yutong, Zhu, Yujie, Zhang, Jing, Liu, Shengzhong Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article buried interface crystallization perovskite solar cell stress relief surface energy
LEADER 01000caa a22002652c 4500
001 NLM363559892
003 DE-627
005 20250305090238.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202306724  |2 doi 
028 5 2 |a pubmed25n1211.xml 
035 |a (DE-627)NLM363559892 
035 |a (NLM)37863645 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Su, Hang  |e verfasserin  |4 aut 
245 1 0 |a Surface Energy Engineering of Buried Interface for Highly Stable Perovskite Solar Cells with Efficiency Over 25 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a The abundant oxygen-related defects (e.g., O vacancies, O-H) in the TiO2 electron transport layer results in high surface energy, which is detrimental to effective carrier extraction and seriously impairs the photovoltaic performance and stability of perovskite solar cells. Here, novel surface energy engineering (SEE) is developed by applying a surfactant of heptadecafluorooctanesulfonate tetraethylammonium (HFSTA) on the surface of the TiO2 . Theoretical calculations show that the HFSTA-TiO2 is less prone to form O vacancies, leading to lower surface energy, thus improving the carrier-extraction efficiency. The experimental results show that superior perovskite film is obtained due to the reduced heterogeneous nucleation sites and improved crystallization process on the modified TiO2 . Furthermore, the flexible long alkyl chains in HFSTA considerably relieve the compressive stresses at the buried interface. By combining the passivation of TiO2 , crystallization process modulation, and stress relief, a champion PCE up to 25.03% is achieved. The device without encapsulation sustains 92.2% of its initial PCE after more than 2500 h storage under air ambient with relative humidity of 25-30%. The SEE of a buried interface paves a new way toward high-efficiency, stable perovskite solar cells 
650 4 |a Journal Article 
650 4 |a buried interface 
650 4 |a crystallization 
650 4 |a perovskite solar cell 
650 4 |a stress relief 
650 4 |a surface energy 
700 1 |a Xu, Zhuo  |e verfasserin  |4 aut 
700 1 |a He, Xilai  |e verfasserin  |4 aut 
700 1 |a Yao, Yuying  |e verfasserin  |4 aut 
700 1 |a Zheng, Xinxin  |e verfasserin  |4 aut 
700 1 |a She, Yutong  |e verfasserin  |4 aut 
700 1 |a Zhu, Yujie  |e verfasserin  |4 aut 
700 1 |a Zhang, Jing  |e verfasserin  |4 aut 
700 1 |a Liu, Shengzhong Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 36(2024), 2 vom: 19. Jan., Seite e2306724  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:36  |g year:2024  |g number:2  |g day:19  |g month:01  |g pages:e2306724 
856 4 0 |u http://dx.doi.org/10.1002/adma.202306724  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2024  |e 2  |b 19  |c 01  |h e2306724