Computing Mixture Adsorption in Porous Materials through Flat Histogram Monte Carlo Methods

Mixture adsorption properties of porous materials are critical to determine their potential as adsorbents in separation applications. Toward the discovery of optimal adsorbents, in silico screening studies typically employ the grand canonical Monte Carlo (GCMC) technique to compute adsorption proper...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 39(2023), 43 vom: 31. Okt., Seite 15380-15390
1. Verfasser: Chen, Hsuan-Chu (VerfasserIn)
Weitere Verfasser: Lin, Li-Chiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363538178
003 DE-627
005 20231226093547.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.3c02466  |2 doi 
028 5 2 |a pubmed24n1211.xml 
035 |a (DE-627)NLM363538178 
035 |a (NLM)37861436 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Hsuan-Chu  |e verfasserin  |4 aut 
245 1 0 |a Computing Mixture Adsorption in Porous Materials through Flat Histogram Monte Carlo Methods 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Mixture adsorption properties of porous materials are critical to determine their potential as adsorbents in separation applications. Toward the discovery of optimal adsorbents, in silico screening studies typically employ the grand canonical Monte Carlo (GCMC) technique to compute adsorption properties of gas mixtures in materials of interest at a given condition (i.e., composition, total pressure, and temperature) or to compute their adsorption properties for each component, followed by utilizing methods to predict mixture adsorption isotherms. However, the former approach results in the need for repeated calculations when different conditions such as compositions are considered. For the latter, the predictions may involve uncertainties, sometimes originating from the fitting quality to the pure component isotherms, and repeated simulations may also be needed for different temperatures. To this end, this study demonstrates the potential of flat histogram Monte Carlo methods in addressing the abovementioned shortfalls. Specifically, the so-called NVT + W method, first reported by Smit and co-workers, is extended herein to determine the macrostate probability distribution (MPD) of binary mixtures in porous materials. The obtained MPD can be reweighted to any conditions, yielding accurate adsorption isotherms of any desired compositions and temperatures. This approach, denoted as 2D NVT + W, is also compared with the widely adopted ideal adsorbed solution theory (IAST) method, and the former is found to offer more reliable predictions. Overall, the 2D NVT + W approach represents an efficient and effective alternative to compute mixture adsorption isotherms for porous materials, and the obtained MPD can be conveniently reused by peer researchers. A user-friendly Python code is also provided along with this article to employ this method 
650 4 |a Journal Article 
700 1 |a Lin, Li-Chiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1999  |g 39(2023), 43 vom: 31. Okt., Seite 15380-15390  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:39  |g year:2023  |g number:43  |g day:31  |g month:10  |g pages:15380-15390 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.3c02466  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 39  |j 2023  |e 43  |b 31  |c 10  |h 15380-15390