Tessellating the Latent Space for Non-Adversarial Generative Auto-Encoders

Non-adversarial generative models are relatively easy to train and have less mode collapse than adversarial models. However, they are not very accurate in approximating the target distribution in latent space because they don't have a discriminator. To this end, we develop a novel divide-and-co...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 2 vom: 19. Feb., Seite 780-792
Auteur principal: Gai, Kuo (Auteur)
Autres auteurs: Zhang, Shihua
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article