Ensemble learning model identifies adaptation classification and turning points of river microbial communities in response to heatwaves

© 2023 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 29(2023), 24 vom: 01. Dez., Seite 6988-7000
1. Verfasser: Qu, Qian (VerfasserIn)
Weitere Verfasser: Xu, Jing, Kang, Weilu, Feng, Ruihong, Hu, Xiangang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article ensemble machine learning heatwaves microbial adaptation rivers turning point
LEADER 01000naa a22002652 4500
001 NLM363397116
003 DE-627
005 20231226093247.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.16985  |2 doi 
028 5 2 |a pubmed24n1211.xml 
035 |a (DE-627)NLM363397116 
035 |a (NLM)37847144 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qu, Qian  |e verfasserin  |4 aut 
245 1 0 |a Ensemble learning model identifies adaptation classification and turning points of river microbial communities in response to heatwaves 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 15.11.2023 
500 |a Date Revised 15.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 John Wiley & Sons Ltd. 
520 |a Heatwaves are a global issue that threaten microbial populations and deteriorate ecosystems. However, how river microbial communities respond to heatwaves and whether and how high temperatures exceed microbial adaptation remain unclear. In this study, we proposed four types of pulse temperature-induced microbial responses and predicted the possibility of microbial adaptation to high temperature in global rivers using ensemble machine learning models. Our findings suggest that microbial communities in parts of South American (e.g., Brazil and Chile) and Southeast Asian (e.g., Vietnam) countries are likely to change due to heatwave disturbance from 25 to 37°C for consecutive days. Furthermore, the microbial communities in approximately 48.4% of the global river gauge stations are prone to fast stress inadaptation, with approximately 76.9% of these stations expected to exceed microbial adaptation after heatwave disturbances. If emissions of particulate matter with sizes not more than 2.5 μm (PM2.5, an indicator of human activities) increase by twofold, the number of global rivers associated with the fast stress adaptation type will decrease by ~13.7% after heatwave disturbances. Understanding microbial responses is crucially important for effective ecosystem management, especially for fragile and sensitive rivers facing heatwave events 
650 4 |a Journal Article 
650 4 |a ensemble machine learning 
650 4 |a heatwaves 
650 4 |a microbial adaptation 
650 4 |a rivers 
650 4 |a turning point 
700 1 |a Xu, Jing  |e verfasserin  |4 aut 
700 1 |a Kang, Weilu  |e verfasserin  |4 aut 
700 1 |a Feng, Ruihong  |e verfasserin  |4 aut 
700 1 |a Hu, Xiangang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 29(2023), 24 vom: 01. Dez., Seite 6988-7000  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:29  |g year:2023  |g number:24  |g day:01  |g month:12  |g pages:6988-7000 
856 4 0 |u http://dx.doi.org/10.1111/gcb.16985  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 24  |b 01  |c 12  |h 6988-7000