Toward Fine-Grained Talking Face Generation

Talking face generation is the process of synthesizing a lip-synchronized video when given a reference portrait and an audio clip. However, generating a fine-grained talking video is nontrivial due to several challenges: 1) capturing vivid facial expressions, such as muscle movements; 2) ensuring sm...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 01., Seite 5794-5807
1. Verfasser: Sheng, Zhicheng (VerfasserIn)
Weitere Verfasser: Nie, Liqiang, Liu, Meng, Wei, Yinwei, Gao, Zan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363367934
003 DE-627
005 20231226093209.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3323452  |2 doi 
028 5 2 |a pubmed24n1211.xml 
035 |a (DE-627)NLM363367934 
035 |a (NLM)37843991 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sheng, Zhicheng  |e verfasserin  |4 aut 
245 1 0 |a Toward Fine-Grained Talking Face Generation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Talking face generation is the process of synthesizing a lip-synchronized video when given a reference portrait and an audio clip. However, generating a fine-grained talking video is nontrivial due to several challenges: 1) capturing vivid facial expressions, such as muscle movements; 2) ensuring smooth transitions between consecutive frames; and 3) preserving the details of the reference portrait. Existing efforts have only focused on modeling rigid lip movements, resulting in low-fidelity videos with jerky facial muscle deformations. To address these challenges, we propose a novel Fine-gRained mOtioN moDel (FROND), consisting of three components. In the first component, we adopt a two-stream encoder to capture local facial movement keypoints and embed their overall motion context as the global code. In the second component, we design a motion estimation module to predict audio-driven movements. This enables the learning of local key point motion in the continuous trajectory space to achieve smooth temporal facial movements. Additionally, the local and global motions are fused to estimate a continuous dense motion field, resulting in spatially smooth movements. In the third component, we devise a novel implicit image decoder based on an implicit neural network. This decoder recovers high-frequency information from the input image, resulting in a high-fidelity talking face. In summary, the FROND refines the motion trajectories of facial keypoints into a continuous dense motion field, which is followed by a decoder that fully exploits the inherent smoothness of the motion. We conduct quantitative and qualitative model evaluations on benchmark datasets. The experimental results show that our proposed FROND significantly outperforms several state-of-the-art baselines 
650 4 |a Journal Article 
700 1 |a Nie, Liqiang  |e verfasserin  |4 aut 
700 1 |a Liu, Meng  |e verfasserin  |4 aut 
700 1 |a Wei, Yinwei  |e verfasserin  |4 aut 
700 1 |a Gao, Zan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 01., Seite 5794-5807  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:01  |g pages:5794-5807 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3323452  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 01  |h 5794-5807