Latent Feature Disentanglement for Visual Domain Generalization

Despite remarkable success in a variety of computer vision applications, it is well-known that deep learning can fail catastrophically when presented with out-of-distribution data, where there are usually style differences between the training and test images. Toward addressing this challenge, we co...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 13., Seite 5751-5763
Auteur principal: Gholami, Behnam (Auteur)
Autres auteurs: El-Khamy, Mostafa, Song, Kee-Bong
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article