Model-Aware Pre-Training for Radial Distortion Rectification

Camera lenses often suffer from optical aberrations, causing radial distortion in the captured images. In those images, there exists a clear and general physical distortion model. However, in existing solutions, such rich geometric prior is under-utilized, and the formulation of an effective predict...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 13., Seite 5764-5778
1. Verfasser: Wang, Wendi (VerfasserIn)
Weitere Verfasser: Feng, Hao, Zhou, Wengang, Liao, Zhaokang, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363245332
003 DE-627
005 20231226092930.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3321459  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363245332 
035 |a (NLM)37831568 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wendi  |e verfasserin  |4 aut 
245 1 0 |a Model-Aware Pre-Training for Radial Distortion Rectification 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Camera lenses often suffer from optical aberrations, causing radial distortion in the captured images. In those images, there exists a clear and general physical distortion model. However, in existing solutions, such rich geometric prior is under-utilized, and the formulation of an effective prediction target is under-explored. To this end, we introduce Radial Distortion TRansformer (RDTR), a new framework for radial distortion rectification. Our RDTR includes a model-aware pre-training stage for distortion feature extraction and a deformation estimation stage for distortion rectification. Technically, on the one hand, we formulate the general radial distortion (i.e., barrel distortion and pincushion distortion) in camera-captured images with a shared geometric distortion model and perform a unified model-aware pre-training for its learning. With the pre-training, the network is capable of encoding the specific distortion pattern of a radially distorted image. After that, we transfer the learned representations to the learning of distortion rectification. On the other hand, we introduce a new prediction target called backward warping flow for rectifying images with any resolution while avoiding image defects. Extensive experiments are conducted on our synthetic dataset, and the results demonstrate that our method achieves state-of-the-art performance while operating in real-time. Besides, we also validate the generalization of RDTR on real-world images. Our source code and the proposed dataset are publicly available at https://github.com/wwd-ustc/RDTR 
650 4 |a Journal Article 
700 1 |a Feng, Hao  |e verfasserin  |4 aut 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Liao, Zhaokang  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 13., Seite 5764-5778  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:13  |g pages:5764-5778 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3321459  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 13  |h 5764-5778