Towards Codebook-Free Deep Probabilistic Quantization for Image Retrieval

As a classical feature compression technique, quantization is usually coupled with inverted indices for scalable image retrieval. Most quantization methods explicitly divide feature space into Voronoi cells, and quantize feature vectors in each cell into the centroids learned from data distribution....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2023), 1 vom: 13. Jan., Seite 626-640
1. Verfasser: Wang, Min (VerfasserIn)
Weitere Verfasser: Zhou, Wengang, Yao, Xin, Tian, Qi, Li, Houqiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363245286
003 DE-627
005 20231226092930.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3324021  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363245286 
035 |a (NLM)37831563 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Min  |e verfasserin  |4 aut 
245 1 0 |a Towards Codebook-Free Deep Probabilistic Quantization for Image Retrieval 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a As a classical feature compression technique, quantization is usually coupled with inverted indices for scalable image retrieval. Most quantization methods explicitly divide feature space into Voronoi cells, and quantize feature vectors in each cell into the centroids learned from data distribution. However, Voronoi decomposition is difficult to achieve discriminative space partition for semantic image retrieval. In this paper, we explore semantic-aware feature space partition by deep neural network instead of Voronoi cells. To this end, we propose a new deep probabilistic quantization method, abbreviated as DeepIndex, which constructs inverted indices without explicit centroid learning. In our method, the deep neural network takes an image as input and outputs its probability of being put into each inverted index list. During training, we progressively quantize each image into the inverted lists with the top- T maximal probabilities, and calculate the reward of each trial based on retrieval accuracy. We optimize the deep neural network to maximize the probability of the inverted list with maximal reward. In this way, the retrieval performance is directly optimized, leading to a more semantically discriminative space partition than other quantization methods. The experiments on public image datasets demonstrate the effectiveness of our DeepIndex method on semantic image retrieval 
650 4 |a Journal Article 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Yao, Xin  |e verfasserin  |4 aut 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Li, Houqiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2023), 1 vom: 13. Jan., Seite 626-640  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2023  |g number:1  |g day:13  |g month:01  |g pages:626-640 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3324021  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2023  |e 1  |b 13  |c 01  |h 626-640