Universal Stripe Symmetry of Short-Range Charge Density Waves in Cuprate Superconductors
© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 3 vom: 06. Jan., Seite e2307515 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , , , , , , , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2024
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article charge density wave cuprates quantum materials resonant inelastic x-ray scattering superconductivity symmetry |
Résumé: | © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH. The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates |
---|---|
Description: | Date Revised 18.01.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202307515 |