A Symmetrical Siamese Network Framework With Contrastive Learning for Pose-Robust Face Recognition

Face recognition has achieved remarkable success owing to the development of deep learning. However, most of existing face recognition models perform poorly against pose variations. We argue that, it is primarily caused by pose-based long-tailed data - imbalanced distribution of training samples bet...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 12., Seite 5652-5663
1. Verfasser: Luan, Xiao (VerfasserIn)
Weitere Verfasser: Ding, Zibiao, Liu, Linghui, Li, Weisheng, Gao, Xinbo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363173560
003 DE-627
005 20231226092804.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3322593  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363173560 
035 |a (NLM)37824317 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luan, Xiao  |e verfasserin  |4 aut 
245 1 2 |a A Symmetrical Siamese Network Framework With Contrastive Learning for Pose-Robust Face Recognition 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.10.2023 
500 |a Date Revised 23.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Face recognition has achieved remarkable success owing to the development of deep learning. However, most of existing face recognition models perform poorly against pose variations. We argue that, it is primarily caused by pose-based long-tailed data - imbalanced distribution of training samples between profile faces and near-frontal faces. Additionally, self-occlusion and nonlinear warping of facial textures caused by large pose variations also increase the difficulty in learning discriminative features of profile faces. In this study, we propose a novel framework called Symmetrical Siamese Network (SSN), which can simultaneously overcome the limitation of pose-based long-tailed data and pose-invariant features learning. Specifically, two sub-modules are proposed in the SSN, i.e., Feature-Consistence Learning sub-Net (FCLN) and Identity-Consistence Learning sub-Net (ICLN). For FCLN, the inputs are all face images on training dataset. Inspired by the contrastive learning, we simulate pose variations of faces and constrain the model to focus on the consistent areas between the original face image and its corresponding virtual pose face images. For ICLN, only profile images are used as inputs, and we propose to adopt Identity Consistence Loss to minimize the intra-class feature variation across different poses. The collaborative learning of two sub-modules guarantees that the parameters of network are updated in a relatively equal probability between near-frontal face images and profile images, so that the pose-based long-tailed problem can be effectively addressed. The proposed SSN shows comparable results over the state-of-the-art methods on several public datasets. In this study, LightCNN is selected as the backbone of SSN, and existing popular networks also can be used into our framework for pose-robust face recognition 
650 4 |a Journal Article 
700 1 |a Ding, Zibiao  |e verfasserin  |4 aut 
700 1 |a Liu, Linghui  |e verfasserin  |4 aut 
700 1 |a Li, Weisheng  |e verfasserin  |4 aut 
700 1 |a Gao, Xinbo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 12., Seite 5652-5663  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:12  |g pages:5652-5663 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3322593  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 12  |h 5652-5663