|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM363167625 |
003 |
DE-627 |
005 |
20231227131734.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202308134
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1226.xml
|
035 |
|
|
|a (DE-627)NLM363167625
|
035 |
|
|
|a (NLM)37823718
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a He, Ying
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A "Trinity" Design of Li-O2 Battery Engaging the Slow-Release Capsule of Redox Mediators
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 Wiley-VCH GmbH.
|
520 |
|
|
|a Nonaqueous Li-O2 battery (LOB) represents one of the promising next-gen energy storage solutions owing to its ultrahigh energy density but suffers from problems such as high charging overpotential, slow redox kinetics, Li anode corrosion, etc., calling for a systemic optimization of the battery configuration and structural components. Herein, an ingenious "trinity" design of LOB is initiated by implementing a hollowed cobalt metal organic framework (MOF) impregnating iodized polypyrrole simultaneously as the cathode catalyst, anode protection layer, and slow-release capsule of redox mediators, so as to systemically address issues of impeded mass transport and redox kinetics on the cathode, dendrite growth, and surface corrosion on the anode, as well as limited intermediate solubility in the low donor-number (DN) solvent. As a result of the systemic effort, the LOB constructed demonstrates an ultralow discharge/charge polarization of 0.2 V, prolonged cycle life of 1244 h and total discharge capacity of 28.41 mAh cm-2 . Mechanistic investigations attribute the superb LOB performance to the redox-mediated solution growth mechanism of crystalline Li2 O2 with both enhanced reaction kinetics and reversibility. This study offers a paradigm in designing smart materials to raise the performance bar of Li-O2 battery toward realistic applications
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a lithium anode protection
|
650 |
|
4 |
|a lithium-oxygen batteries
|
650 |
|
4 |
|a metal organic frameworks
|
650 |
|
4 |
|a oxygen catalyst
|
650 |
|
4 |
|a redox mediators
|
700 |
1 |
|
|a Ding, Leyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Cheng, Jian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mei, Shiwei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xie, Xulan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zheng, Zhangyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Pan, Weiyi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qin, Yongze
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Fangding
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Yang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Deng, Zhao
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 49 vom: 18. Dez., Seite e2308134
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:49
|g day:18
|g month:12
|g pages:e2308134
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202308134
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 49
|b 18
|c 12
|h e2308134
|