|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM363129294 |
003 |
DE-627 |
005 |
20231226092708.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.3c01632
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1210.xml
|
035 |
|
|
|a (DE-627)NLM363129294
|
035 |
|
|
|a (NLM)37819843
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Chen, Lihua
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Preparation of a Magnetic Core-Shell Bioreactor for Oil/Water Separation and Biodegradation
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.11.2023
|
500 |
|
|
|a Date Revised 18.11.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a With the frequent occurrence of offshore oil spills, the effective separation and treatment of oily wastewater are essential to the environment. In this work, the core-shell bioreactor (abbreviated as Fe3O4/MHNTs-CNFaerogel) was prepared with a core composed of camphor leaf cellulose-based aerogels for loading microorganisms and a shell derived from hydrophobic silane-modified halloysite doping with Fe3O4 for selective absorption of oil and maganetic recycling. The core-shell-structured bioreactor Fe3O4/MHNTs-CNF@aerogel has excellent self-floating properties and can float on water for up to 100 days. The whole core-shell structure not only has excellent oil/water separation performance but also has good microbial degradation performance. By applying it in water containing 5% diesel for the biodegradation test, the biodegradation efficiency of Fe3O4/MHNTs-CNF@aerogel for diesel can reach 82.4% in 10 days. The efficiency was 20% higher than for free microorganisms, and it still had excellent degradation ability after three degradation cycles, with a degradation rate of over 75%. In addition, the result obtained from the study on environmental tolerance shows that Fe3O4/MHNTs-CNF@aerogel possessed a strong tolerance ability under different pH and salinity conditions. The Fe3O4/MHNTs-CNF@aerogel also has superior mechanical properties; i.e., nearly no deformation occurs at 30 kPa. Compared with those conventional oil/water separation materials which can only absorb or separate the oils for water with limited capacity and taking the risk of secondary contamination, our core-shell-structured bioreactor is capable of not only selectively absorbing oil from water through its hydrophobic shell but also degrading it into a nontoxic substance by its microorganism-loaded core, thus showing great potential for practical application in oily wastewater treatment
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Oils
|2 NLM
|
700 |
1 |
|
|a Qu, Nannan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Haijing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Jiang, Shuai
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Bin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hasi, Qi-Meige
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yuhan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 39(2023), 42 vom: 24. Okt., Seite 14891-14903
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:39
|g year:2023
|g number:42
|g day:24
|g month:10
|g pages:14891-14903
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.3c01632
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 39
|j 2023
|e 42
|b 24
|c 10
|h 14891-14903
|