The Importance of Expert Knowledge for Automatic Modulation Open Set Recognition

Automatic modulation classification (AMC) is an important technology for the monitoring, management, and control of communication systems. In recent years, machine learning approaches are becoming popular to improve the effectiveness of AMC for radio signals. However, the automatic modulation open-s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 11 vom: 11. Nov., Seite 13730-13748
1. Verfasser: Li, Taotao (VerfasserIn)
Weitere Verfasser: Wen, Zhenyu, Long, Yang, Hong, Zhen, Zheng, Shilian, Yu, Li, Chen, Bo, Yang, Xiaoniu, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363128956
003 DE-627
005 20231226092707.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3294505  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363128956 
035 |a (NLM)37819810 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Taotao  |e verfasserin  |4 aut 
245 1 4 |a The Importance of Expert Knowledge for Automatic Modulation Open Set Recognition 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.10.2023 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Automatic modulation classification (AMC) is an important technology for the monitoring, management, and control of communication systems. In recent years, machine learning approaches are becoming popular to improve the effectiveness of AMC for radio signals. However, the automatic modulation open-set recognition (AMOSR) scheme that aims to identify the known modulation types and recognize the unknown modulation signals is not well studied. Therefore, in this paper, we propose a novel multi-modal marginal prototype framework for radio frequency (RF) signals (MMPRF) to improve AMOSR performance. First, MMPRF addresses the problem of simultaneous recognition of closed and open sets by partitioning the feature space in the way of one versus other and marginal restrictions. Second, we exploit the wireless signal domain knowledge to extract a series of signal-related features to enhance the AMOSR capability. In addition, we propose a GAN-based unknown sample generation strategy to allow the model to understand the unknown world. Finally, we conduct extensive experiments on several publicly available radio modulation data, and experimental results show that our proposed MMPRF outperforms the state-of-the-art AMOSR methods 
650 4 |a Journal Article 
700 1 |a Wen, Zhenyu  |e verfasserin  |4 aut 
700 1 |a Long, Yang  |e verfasserin  |4 aut 
700 1 |a Hong, Zhen  |e verfasserin  |4 aut 
700 1 |a Zheng, Shilian  |e verfasserin  |4 aut 
700 1 |a Yu, Li  |e verfasserin  |4 aut 
700 1 |a Chen, Bo  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaoniu  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 11 vom: 11. Nov., Seite 13730-13748  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:11  |g day:11  |g month:11  |g pages:13730-13748 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3294505  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 11  |b 11  |c 11  |h 13730-13748