HAKE : A Knowledge Engine Foundation for Human Activity Understanding

Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to se...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 7 vom: 11. Juli, Seite 8494-8506
1. Verfasser: Li, Yong-Lu (VerfasserIn)
Weitere Verfasser: Liu, Xinpeng, Wu, Xiaoqian, Li, Yizhuo, Qiu, Zuoyu, Xu, Liang, Xu, Yue, Fang, Hao-Shu, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM363128816
003 DE-627
005 20231226092707.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2022.3232797  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363128816 
035 |a (NLM)37819797 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yong-Lu  |e verfasserin  |4 aut 
245 1 0 |a HAKE  |b A Knowledge Engine Foundation for Human Activity Understanding 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 01.11.2023 
500 |a Date Revised 13.11.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to semantics directly, but activity patterns are much different from object patterns, thus hindering another success. In this article, we propose a novel paradigm to reformulate this task in two-stage: first mapping pixels to an intermediate space spanned by atomic activity primitives, then programming detected primitives with interpretable logic rules to infer semantics. To afford a representative primitive space, we build a knowledge base including 26+ M primitive labels and logic rules from human priors or automatic discovering. Our framework, Human Activity Knowledge Engine (HAKE), exhibits superior generalization ability and performance upon canonical methods on challenging benchmarks. Code and data are available at http://hake-mvig.cn/ 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Xinpeng  |e verfasserin  |4 aut 
700 1 |a Wu, Xiaoqian  |e verfasserin  |4 aut 
700 1 |a Li, Yizhuo  |e verfasserin  |4 aut 
700 1 |a Qiu, Zuoyu  |e verfasserin  |4 aut 
700 1 |a Xu, Liang  |e verfasserin  |4 aut 
700 1 |a Xu, Yue  |e verfasserin  |4 aut 
700 1 |a Fang, Hao-Shu  |e verfasserin  |4 aut 
700 1 |a Lu, Cewu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 7 vom: 11. Juli, Seite 8494-8506  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:45  |g year:2023  |g number:7  |g day:11  |g month:07  |g pages:8494-8506 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2022.3232797  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 7  |b 11  |c 07  |h 8494-8506