|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM363128816 |
003 |
DE-627 |
005 |
20231226092707.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2022.3232797
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1210.xml
|
035 |
|
|
|a (DE-627)NLM363128816
|
035 |
|
|
|a (NLM)37819797
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Li, Yong-Lu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a HAKE
|b A Knowledge Engine Foundation for Human Activity Understanding
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 01.11.2023
|
500 |
|
|
|a Date Revised 13.11.2023
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a Human activity understanding is of widespread interest in artificial intelligence and spans diverse applications like health care and behavior analysis. Although there have been advances with deep learning, it remains challenging. The object recognition-like solutions usually try to map pixels to semantics directly, but activity patterns are much different from object patterns, thus hindering another success. In this article, we propose a novel paradigm to reformulate this task in two-stage: first mapping pixels to an intermediate space spanned by atomic activity primitives, then programming detected primitives with interpretable logic rules to infer semantics. To afford a representative primitive space, we build a knowledge base including 26+ M primitive labels and logic rules from human priors or automatic discovering. Our framework, Human Activity Knowledge Engine (HAKE), exhibits superior generalization ability and performance upon canonical methods on challenging benchmarks. Code and data are available at http://hake-mvig.cn/
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Liu, Xinpeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Xiaoqian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yizhuo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Qiu, Zuoyu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Liang
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xu, Yue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fang, Hao-Shu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lu, Cewu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 45(2023), 7 vom: 11. Juli, Seite 8494-8506
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:45
|g year:2023
|g number:7
|g day:11
|g month:07
|g pages:8494-8506
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2022.3232797
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 45
|j 2023
|e 7
|b 11
|c 07
|h 8494-8506
|