Efficient integration of electrocoagulation treatment with the spray-pyrolyzed activated carbon coating on stainless steel electrodes for textile effluent-bath reuse with ease

© 2023 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 95(2023), 10 vom: 09. Okt., Seite e10938
1. Verfasser: Gowthaman, S (VerfasserIn)
Weitere Verfasser: Selvaraju, T
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article banana peel-derived activated carbon electrocoagulation spray pyrolysis stainless steel electrodes textile industrial wastewater Wastewater Stainless Steel 12597-68-1 Charcoal mehr... 16291-96-6 Environmental Pollutants Industrial Waste
Beschreibung
Zusammenfassung:© 2023 Water Environment Federation.
In this study, the electrocoagulation (EC) treatment was used to minimize and separate pollutants from textile industrial wastewater (TIWW), including high color, chemical oxygen demand (COD), total organic carbon (TOC), and total dissolved solids (TDS). To enhance the EC treatment efficiency, a novel strategy has been followed in the study that involves thin-film coating on 316 stainless steel (SS) electrodes with banana peel-derived activated carbon (BPAC) by dip coating, spin coating, or spray coating. Among the different types of coating, thickness and contact angle measurements have elucidated that the spray coating of BPAC on SS electrode is the best tool with minimum thickness and contact angle. In this study, a bare SS electrode was used as the anode and a thin-film spray-coated BPAC on the SS electrode was used as the cathode. Moreover, optimization plays a key role in EC treatment process, where operating conditions such as a current density of 10 mA/cm2 , contact time of 15 min, and a pH of 7 were fixed. As a result, the findings indicate comparatively high color removal of 98%, COD removal of 91%, TOC removal of 89.6%, and TDS removal of 68% are achieved with ease. Accordingly, in comparison with plain SS electrodes or dip- or spin-coated BPAC on SS electrodes, spray-coated BPAC on SS electrodes in EC treatment outperforms in removing high color, TOC, COD, and TDS. Overall, the study highlights the potential of EC treatment integrated with adsorption procedures for TIWW treatment. Particularly, the use of thin-film spray-coated BPAC on SS electrodes in the EC treatment process led to an effective and sustainable tool for treating and reuse of TIWW. It is due to its low operation and maintenance cost and studied in a short interval of time. Finally, the ultimate goal was firmly achieved in pilot-scale studies by the safe discharge into the environment or reuse of treated textile wastewater. Thus, it is a promising alternative with an environmentally friendly footprint that could be easily implemented in any textile industry premises. PRACTITIONER POINTS: Heavy metals, oils, facts, suspended solids, and other pollutants can be removed from industrial effluent by using electrocoagulation. The process is both cost-effective and energy-efficient, and it is easily integrated with other water treatment technologies. According to the findings of this study, minimum current density should be applied to BPAC-SS-coated electrodes by DC power supplies to treat textile industry effluents at low operating costs. When compared with a plain SS electrode, the spray-coated BPAC on SS electrode provides better performance in effluent treatment
Beschreibung:Date Completed 30.10.2023
Date Revised 30.10.2023
published: Print
Citation Status MEDLINE
ISSN:1554-7531
DOI:10.1002/wer.10938