A Bayesian Federated Learning Framework With Online Laplace Approximation

Federated learning (FL) allows multiple clients to collaboratively learn a globally shared model through cycles of model aggregation and local model training, without the need to share data. Most existing FL methods train local models separately on different clients, and then simply average their pa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 1 vom: 30. Jan., Seite 1-16
1. Verfasser: Liu, Liangxi (VerfasserIn)
Weitere Verfasser: Jiang, Xi, Zheng, Feng, Chen, Hong, Qi, Guo-Jun, Huang, Heng, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM363057307
003 DE-627
005 20250305080544.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3322743  |2 doi 
028 5 2 |a pubmed25n1209.xml 
035 |a (DE-627)NLM363057307 
035 |a (NLM)37812559 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Liangxi  |e verfasserin  |4 aut 
245 1 2 |a A Bayesian Federated Learning Framework With Online Laplace Approximation 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Federated learning (FL) allows multiple clients to collaboratively learn a globally shared model through cycles of model aggregation and local model training, without the need to share data. Most existing FL methods train local models separately on different clients, and then simply average their parameters to obtain a centralized model on the server side. However, these approaches generally suffer from large aggregation errors and severe local forgetting, which are particularly bad in heterogeneous data settings. To tackle these issues, in this paper, we propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side. On the server side, a multivariate Gaussian product mechanism is employed to construct and maximize a global posterior, largely reducing the aggregation errors induced by large discrepancies between local models. On the client side, a prior loss that uses the global posterior probabilistic parameters delivered from the server is designed to guide the local training. Binding such learning constraints from other clients enables our method to mitigate local forgetting. Finally, we achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method 
650 4 |a Journal Article 
700 1 |a Jiang, Xi  |e verfasserin  |4 aut 
700 1 |a Zheng, Feng  |e verfasserin  |4 aut 
700 1 |a Chen, Hong  |e verfasserin  |4 aut 
700 1 |a Qi, Guo-Jun  |e verfasserin  |4 aut 
700 1 |a Huang, Heng  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 1 vom: 30. Jan., Seite 1-16  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:46  |g year:2024  |g number:1  |g day:30  |g month:01  |g pages:1-16 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3322743  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 1  |b 30  |c 01  |h 1-16