QARV : Quantization-Aware ResNet VAE for Lossy Image Compression

This paper addresses the problem of lossy image compression, a fundamental problem in image processing and information theory that is involved in many real-world applications. We start by reviewing the framework of variational autoencoders (VAEs), a powerful class of generative probabilistic models...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 1 vom: 12. Jan., Seite 436-450
1. Verfasser: Duan, Zhihao (VerfasserIn)
Weitere Verfasser: Lu, Ming, Ma, Jack, Huang, Yuning, Ma, Zhan, Zhu, Fengqing
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM363057277
003 DE-627
005 20240108140439.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3322904  |2 doi 
028 5 2 |a pubmed24n1245.xml 
035 |a (DE-627)NLM363057277 
035 |a (NLM)37812557 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Duan, Zhihao  |e verfasserin  |4 aut 
245 1 0 |a QARV  |b Quantization-Aware ResNet VAE for Lossy Image Compression 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper addresses the problem of lossy image compression, a fundamental problem in image processing and information theory that is involved in many real-world applications. We start by reviewing the framework of variational autoencoders (VAEs), a powerful class of generative probabilistic models that has a deep connection to lossy compression. Based on VAEs, we develop a new scheme for lossy image compression, which we name quantization-aware ResNet VAE (QARV). Our method incorporates a hierarchical VAE architecture integrated with test-time quantization and quantization-aware training, without which efficient entropy coding would not be possible. In addition, we design the neural network architecture of QARV specifically for fast decoding and propose an adaptive normalization operation for variable-rate compression. Extensive experiments are conducted, and results show that QARV achieves variable-rate compression, high-speed decoding, and better rate-distortion performance than existing baseline methods 
650 4 |a Journal Article 
700 1 |a Lu, Ming  |e verfasserin  |4 aut 
700 1 |a Ma, Jack  |e verfasserin  |4 aut 
700 1 |a Huang, Yuning  |e verfasserin  |4 aut 
700 1 |a Ma, Zhan  |e verfasserin  |4 aut 
700 1 |a Zhu, Fengqing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2024), 1 vom: 12. Jan., Seite 436-450  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2024  |g number:1  |g day:12  |g month:01  |g pages:436-450 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3322904  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2024  |e 1  |b 12  |c 01  |h 436-450