|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM363057277 |
003 |
DE-627 |
005 |
20240108140439.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2023.3322904
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1245.xml
|
035 |
|
|
|a (DE-627)NLM363057277
|
035 |
|
|
|a (NLM)37812557
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Duan, Zhihao
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a QARV
|b Quantization-Aware ResNet VAE for Lossy Image Compression
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 01.01.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a This paper addresses the problem of lossy image compression, a fundamental problem in image processing and information theory that is involved in many real-world applications. We start by reviewing the framework of variational autoencoders (VAEs), a powerful class of generative probabilistic models that has a deep connection to lossy compression. Based on VAEs, we develop a new scheme for lossy image compression, which we name quantization-aware ResNet VAE (QARV). Our method incorporates a hierarchical VAE architecture integrated with test-time quantization and quantization-aware training, without which efficient entropy coding would not be possible. In addition, we design the neural network architecture of QARV specifically for fast decoding and propose an adaptive normalization operation for variable-rate compression. Extensive experiments are conducted, and results show that QARV achieves variable-rate compression, high-speed decoding, and better rate-distortion performance than existing baseline methods
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Lu, Ming
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Jack
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Huang, Yuning
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Zhan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhu, Fengqing
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 46(2024), 1 vom: 12. Jan., Seite 436-450
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:46
|g year:2024
|g number:1
|g day:12
|g month:01
|g pages:436-450
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2023.3322904
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 46
|j 2024
|e 1
|b 12
|c 01
|h 436-450
|