Image Deblurring With Image Blurring

Deep learning (DL) based methods for motion deblurring, taking advantage of large-scale datasets and sophisticated network structures, have reported promising results. However, two challenges still remain: existing methods usually perform well on synthetic datasets but cannot deal with complex real-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 09., Seite 5595-5609
1. Verfasser: Li, Ziyao (VerfasserIn)
Weitere Verfasser: Gao, Zhi, Yi, Han, Fu, Yu, Chen, Boan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM363057129
003 DE-627
005 20231226092535.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3321515  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363057129 
035 |a (NLM)37812541 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Ziyao  |e verfasserin  |4 aut 
245 1 0 |a Image Deblurring With Image Blurring 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Deep learning (DL) based methods for motion deblurring, taking advantage of large-scale datasets and sophisticated network structures, have reported promising results. However, two challenges still remain: existing methods usually perform well on synthetic datasets but cannot deal with complex real-world blur, and in addition, over- and under-estimation of the blur will result in restored images that remain blurred and even introduce unwanted distortion. We propose a motion deblurring framework that includes a Blur Space Disentangled Network (BSDNet) and a Hierarchical Scale-recurrent Deblurring Network (HSDNet) to address these issues. Specifically, we train an image blurring model to facilitate learning a better image deblurring model. Firstly, BSDNet learns how to separate the blur features from blurry images, which is adaptable for blur transferring, dataset augmentation, and ultimately directing the deblurring model. Secondly, to gradually recover sharp information in a coarse-to-fine manner, HSDNet makes full use of the blur features acquired by BSDNet as a priori and breaks down the non-uniform deblurring task into various subtasks. Moreover, the motion blur dataset created by BSDNet also bridges the gap between training images and actual blur. Extensive experiments on real-world blur datasets demonstrate that our method works effectively on complex scenarios, resulting in the best performance that significantly outperforms many state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Gao, Zhi  |e verfasserin  |4 aut 
700 1 |a Yi, Han  |e verfasserin  |4 aut 
700 1 |a Fu, Yu  |e verfasserin  |4 aut 
700 1 |a Chen, Boan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 09., Seite 5595-5609  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:09  |g pages:5595-5609 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3321515  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 09  |h 5595-5609