|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM363053719 |
003 |
DE-627 |
005 |
20240302232321.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202307646
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1314.xml
|
035 |
|
|
|a (DE-627)NLM363053719
|
035 |
|
|
|a (NLM)37812198
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zhang, Qilun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Industrial Kraft Lignin Based Binary Cathode Interface Layer Enables Enhanced Stability in High Efficiency Organic Solar Cells
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 02.03.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Herein, a binary cathode interface layer (CIL) strategy based on the industrial solvent fractionated LignoBoost kraft lignin (KL) is adopted for fabrication of organic solar cells (OSCs). The uniformly distributed phenol moieties in KL enable it to easily form hydrogen bonds with commonly used CIL materials, i.e., bathocuproine (BCP) and PFN-Br, resulting in binary CILs with tunable work function (WF). This work shows that the binary CILs work well in OSCs with large KL ratio compatibility, exhibiting equivalent or even higher efficiency to the traditional CILs in state of art OSCs. In addition, the combination of KL and BCP significantly enhanced OSC stability, owing to KL blocking the reaction between BCP and nonfullerene acceptors (NFAs). This work provides a simple and effective way to achieve high-efficient OSCs with better stability and sustainability by using wood-based materials
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a bathocuproine
|
650 |
|
4 |
|a binary cathode interface layer
|
650 |
|
4 |
|a lignin
|
650 |
|
4 |
|a organic solar cell
|
650 |
|
4 |
|a stability
|
700 |
1 |
|
|a Liu, Tiefeng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wilken, Sebastian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Xiong, Shaobing
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Huotian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ribca, Iuliana
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liao, Mingna
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Xianjie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kroon, Renee
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fabiano, Simone
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Gao, Feng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lawoko, Martin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bao, Qinye
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Österbacka, Ronald
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Johansson, Mats
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Fahlman, Mats
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 9 vom: 29. März, Seite e2307646
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:9
|g day:29
|g month:03
|g pages:e2307646
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202307646
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 9
|b 29
|c 03
|h e2307646
|