High-Efficiency Binary and Ternary Organic Solar Cells Based on Novel Nonfused-Ring Electron Acceptors
© 2023 Wiley-VCH GmbH.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 36(2024), 7 vom: 09. Feb., Seite e2307292 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2024
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article end group engineering nonfused ring electron acceptors organic solar cells side chain engineering ternary blend strategy |
Zusammenfassung: | © 2023 Wiley-VCH GmbH. In this study, three nonfused-ring electron acceptors (2TT, 2TT-C6-F, and 2TT-C11-F) with the same steric hindrance groups (2,4,6-tripropylbenzene) are designed and synthesized and the impact of electron-withdrawing and lateral alkyl side chains on the performance of binary and ternary organic solar cells (OSCs) is explored. For the binary OSCs, 2TT-C11-F with IC-2F terminal groups and lateral undecyl side chains display a red shifted absorption spectrum and suitable energy levels, and the corresponding blend film exhibits appropriate phase separation and crystallinity. Thus, binary OSCs based on 2TT-C11-F achieve an impressive power conversion efficiency of 13.03%, much higher than the efficiencies of those based on 2TT (9.68%) and 2TT-C6-F (12.11%). In the ternary OSCs, 2TT with CC terminal groups and lateral hexyl side chains exhibit complementary absorption and cascade energy levels with a host binary system (D18:BTP-eC9-4F). Hence, the ternary OSCs based on 2TT achieve a remarkable efficiency of 19.39%, ranking among the highest reported values. The research yields comprehensive 2TT-series nonfused-ring electron acceptors, demonstrating their great potential for the fabrication of high-performance binary and ternary OSCs |
---|---|
Beschreibung: | Date Revised 15.02.2024 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.202307292 |