Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 14 vom: 14., Seite 2914-2933
1. Verfasser: Lue, Heng-Hui (VerfasserIn)
Weitere Verfasser: Tzeng, ShengLi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article Covariates dimension reduction kriging semi-parametric models spatio-temporal data visualization
LEADER 01000naa a22002652 4500
001 NLM363017984
003 DE-627
005 20231226092448.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2147150  |2 doi 
028 5 2 |a pubmed24n1210.xml 
035 |a (DE-627)NLM363017984 
035 |a (NLM)37808617 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lue, Heng-Hui  |e verfasserin  |4 aut 
245 1 0 |a Interpretable, predictive spatio-temporal models via enhanced pairwise directions estimation 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a This article concerns predictive modeling for spatio-temporal data as well as model interpretation using data information in space and time. We develop a novel approach based on supervised dimension reduction for such data in order to capture nonlinear mean structures without requiring a prespecified parametric model. In addition to prediction as a common interest, this approach emphasizes the exploration of geometric information from the data. The method of Pairwise Directions Estimation (PDE) is implemented in our approach as a data-driven function searching for spatial patterns and temporal trends. The benefit of using geometric information from the method of PDE is highlighted, which aids effectively in exploring data structures. We further enhance PDE, referring to it as PDE+, by incorporating kriging to estimate the random effects not explained in the mean functions. Our proposal can not only increase prediction accuracy but also improve the interpretation for modeling. Two simulation examples are conducted and comparisons are made with several existing methods. The results demonstrate that the proposed PDE+ method is very useful for exploring and interpreting the patterns and trends for spatio-temporal data. Illustrative applications to two real datasets are also presented 
650 4 |a Journal Article 
650 4 |a Covariates 
650 4 |a dimension reduction 
650 4 |a kriging 
650 4 |a semi-parametric models 
650 4 |a spatio-temporal data 
650 4 |a visualization 
700 1 |a Tzeng, ShengLi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 14 vom: 14., Seite 2914-2933  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnns 
773 1 8 |g volume:50  |g year:2023  |g number:14  |g day:14  |g pages:2914-2933 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2147150  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 14  |b 14  |h 2914-2933