Rapid online plant leaf area change detection with high-throughput plant image data

© 2022 Informa UK Limited, trading as Taylor & Francis Group.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied statistics. - 1991. - 50(2023), 14 vom: 14., Seite 2984-2998
1. Verfasser: Zhan, Yinglun (VerfasserIn)
Weitere Verfasser: Zhang, Ruizhi, Zhou, Yuzhen, Stoerger, Vincent, Hiller, Jeremy, Awada, Tala, Ge, Yufeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Journal of applied statistics
Schlagworte:Journal Article ADMM algorithm Supervised learning adaptive cusum high-throughput plant phenotyping (HTPP) online detection plant leaf area
LEADER 01000caa a22002652c 4500
001 NLM363017976
003 DE-627
005 20250305080131.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1080/02664763.2022.2150753  |2 doi 
028 5 2 |a pubmed25n1209.xml 
035 |a (DE-627)NLM363017976 
035 |a (NLM)37808616 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhan, Yinglun  |e verfasserin  |4 aut 
245 1 0 |a Rapid online plant leaf area change detection with high-throughput plant image data 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2022 Informa UK Limited, trading as Taylor & Francis Group. 
520 |a High-throughput plant phenotyping (HTPP) has become an emerging technique to study plant traits due to its fast, labor-saving, accurate and non-destructive nature. It has wide applications in plant breeding and crop management. However, the resulting massive image data has raised a challenge associated with efficient plant traits prediction and anomaly detection. In this paper, we propose a two-step image-based online detection framework for monitoring and quick change detection of the individual plant leaf area via real-time imaging data. Our proposed method is able to achieve a smaller detection delay compared with some baseline methods under some predefined false alarm rate constraint. Moreover, it does not need to store all past image information and can be implemented in real time. The efficiency of the proposed framework is validated by a real data analysis 
650 4 |a Journal Article 
650 4 |a ADMM algorithm 
650 4 |a Supervised learning 
650 4 |a adaptive cusum 
650 4 |a high-throughput plant phenotyping (HTPP) 
650 4 |a online detection 
650 4 |a plant leaf area 
700 1 |a Zhang, Ruizhi  |e verfasserin  |4 aut 
700 1 |a Zhou, Yuzhen  |e verfasserin  |4 aut 
700 1 |a Stoerger, Vincent  |e verfasserin  |4 aut 
700 1 |a Hiller, Jeremy  |e verfasserin  |4 aut 
700 1 |a Awada, Tala  |e verfasserin  |4 aut 
700 1 |a Ge, Yufeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied statistics  |d 1991  |g 50(2023), 14 vom: 14., Seite 2984-2998  |w (DE-627)NLM098188178  |x 0266-4763  |7 nnas 
773 1 8 |g volume:50  |g year:2023  |g number:14  |g day:14  |g pages:2984-2998 
856 4 0 |u http://dx.doi.org/10.1080/02664763.2022.2150753  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 50  |j 2023  |e 14  |b 14  |h 2984-2998