Bayesian-based calibration for water quality model parameters

© 2023 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 95(2023), 10 vom: 26. Okt., Seite e10936
1. Verfasser: Bai, Bing (VerfasserIn)
Weitere Verfasser: Dong, Fei, Peng, Wenqi, Liu, Xiaobo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article Bayesian inference Markov chain Monte Carlo parameter calibration water quality model
LEADER 01000naa a22002652 4500
001 NLM363010424
003 DE-627
005 20231226092434.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.10936  |2 doi 
028 5 2 |a pubmed24n1209.xml 
035 |a (DE-627)NLM363010424 
035 |a (NLM)37807852 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bai, Bing  |e verfasserin  |4 aut 
245 1 0 |a Bayesian-based calibration for water quality model parameters 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2023 
500 |a Date Revised 30.10.2023 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © 2023 Water Environment Federation. 
520 |a To improve the efficiency and accuracy of water quality model parameter calibration and avoid local optima and the phenomenon in which different parameters have the same effect, this paper proposed a novel Bayesian-based water quality model parameter calibration method. Using Bayesian inference, the parameter calibration problem was converted into a posterior probability function sampling problem, which was sampled using the Markov Chain Monte Carlo algorithm. The convergence speed of the calibration was further improved by setting the optimized initial sampling value. The influences of the initial sampling value, Markov chain length, and proposal distribution form on the calibration effect were evaluated using four specific cases. The results indicate that (1) the mean relative error (MRE) of the parameter calibration results of this method is less than 10%, with the calibration MRE of Dx and Dy being 5.3% and 8.3%, respectively; (2) when the parameter sensitivity is low, the calibration effect of this method is relatively poor, with a calibration MRE of 46% for k; (3) the parameter calibration can be completed more efficiently by setting an optimized initial value for the MCMC, choosing a reasonable Markov chain length and a suitable proposal distribution form. PRACTITIONER POINTS: Bayesian-based water quality model parameter calibration method is proposed and posterior probability distribution was sampled using the MCMC algorithm. Parameter calibration can be completed more efficiently by setting an optimized initial value for the MCMC. As a result, efficient and accurate parameter calibration of water quality models was achieved. This method is widely applicable to various models, and the calibration speed depends on the calculation speed of the model 
650 4 |a Journal Article 
650 4 |a Bayesian inference 
650 4 |a Markov chain Monte Carlo 
650 4 |a parameter calibration 
650 4 |a water quality model 
700 1 |a Dong, Fei  |e verfasserin  |4 aut 
700 1 |a Peng, Wenqi  |e verfasserin  |4 aut 
700 1 |a Liu, Xiaobo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 95(2023), 10 vom: 26. Okt., Seite e10936  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:95  |g year:2023  |g number:10  |g day:26  |g month:10  |g pages:e10936 
856 4 0 |u http://dx.doi.org/10.1002/wer.10936  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 95  |j 2023  |e 10  |b 26  |c 10  |h e10936