Semi-Supervised Learning for FGVC With Out-of-Category Data

Despite great strides made on fine-grained visual classification (FGVC), current methods are still heavily reliant on fully-supervised paradigms where ample expert labels are called for. Semi-supervised learning (SSL) techniques, acquiring knowledge from unlabeled data, provide a considerable means...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 5 vom: 04. Apr., Seite 2658-2671
1. Verfasser: Du, Ruoyi (VerfasserIn)
Weitere Verfasser: Chang, Dongliang, Ma, Zhanyu, Liang, Kongming, Song, Yi-Zhe, Guo, Jun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article