Mutation of the gene encoding the PHD-type transcription factor SAB23 confers submergence tolerance in rice

© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 75(2024), 1 vom: 01. Jan., Seite 168-179
1. Verfasser: Duan, Ao (VerfasserIn)
Weitere Verfasser: Liu, Rui, Liu, Changchang, Wu, Fei, Su, Hang, Zhou, Shuangzhen, Huang, Min, Tian, Xiaohai, Jia, Haitao, Liu, Ya, Li, Manfei, Du, Hewei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't GA13ox GA4 gibberellin plant homeodomain rice (Oryza sativa) submergence tolerance transcription factor Transcription Factors mehr... Plant Proteins Cytochrome P-450 Enzyme System 9035-51-2
Beschreibung
Zusammenfassung:© The Author(s) 2023. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Submergence is a major constraint on rice production in South and Southeast Asia. In this study, we determined that a gene of the Sub1A-binding protein family, SAB23, encodes a plant homeodomain (PHD)-type transcription factor that has a novel function of negatively regulating submergence tolerance in rice. The T-DNA insertion mutant sab23 displayed reduced plant height, delayed seed maturation, and lower percentage seed set. Importantly, this mutant also exhibited enhanced submergence tolerance. In addition, CRISPR/Cas9 knock out of SAB23 resulted in a significant reduction in the content of the gibberellin GA4 and a dramatic increase in the content of GA1 in the plants. SAB23 binds to the promoter of CYTOCHROME P450 714B2 (CYP714B2), which encodes a GA13-oxidase that catalyses the conversion of GA53 to GA19. Disruption of SAB23 function led to increased CYP714B2 transcription, and overexpression of CYP714B2 produced phenotypes similar to those of the SAB23-knockout plants. Taken together, our results reveal that SAB23 negatively regulates rice submergence tolerance by modulating CYP714B2 expression, which has significant potential for use in future breeding
Beschreibung:Date Completed 25.12.2023
Date Revised 26.07.2024
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erad388