Marriage of High-Throughput Gradient Surface Generation With Statistical Learning for the Rational Design of Functionalized Biomaterials

© 2023 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 35(2023), 49 vom: 02. Dez., Seite e2303253
1. Verfasser: Fang, Zhou (VerfasserIn)
Weitere Verfasser: Zhang, Meng, Wang, Huaiming, Chen, Junjian, Yuan, Haipeng, Wang, Mengyao, Ye, Silin, Jia, Yong-Guang, Sheong, Fu Kit, Wang, Yingjun, Wang, Lin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bioactive peptides gradient surface high-throughput screening machine learning surface functionalized Biocompatible Materials
LEADER 01000caa a22002652c 4500
001 NLM36289342X
003 DE-627
005 20250305074740.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202303253  |2 doi 
028 5 2 |a pubmed25n1209.xml 
035 |a (DE-627)NLM36289342X 
035 |a (NLM)37795620 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Zhou  |e verfasserin  |4 aut 
245 1 0 |a Marriage of High-Throughput Gradient Surface Generation With Statistical Learning for the Rational Design of Functionalized Biomaterials 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.12.2023 
500 |a Date Revised 16.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2023 Wiley-VCH GmbH. 
520 |a Functional biomaterial is already an important aspect in modern therapeutics; yet, the design of novel multi-functional biomaterial is still a challenging task nowadays. When several biofunctional components are present, the complexity that arises from their combinations and interactions will lead to tedious trial-and-error screening. In this work, a novel strategy of biomaterial rational design through the marriage of gradient surface generation with statistical learning is presented. Not only can parameter combinations be screened in a high-throughput fashion, but also the optimal conditions beyond the experimentally tested range can be extrapolated from the models. The power of the strategy is demonstrated in rationally designing an unprecedented ternary functionalized surface for orthopedic implant, with optimal osteogenic, angiogenic, and neurogenic activities, and its optimality and the best osteointegration promotion are confirmed in vitro and in vivo, respectively. The presented strategy is expected to open up new possibilities in the rational design of biomaterials 
650 4 |a Journal Article 
650 4 |a bioactive peptides 
650 4 |a gradient surface 
650 4 |a high-throughput screening 
650 4 |a machine learning 
650 4 |a surface functionalized 
650 7 |a Biocompatible Materials  |2 NLM 
700 1 |a Zhang, Meng  |e verfasserin  |4 aut 
700 1 |a Wang, Huaiming  |e verfasserin  |4 aut 
700 1 |a Chen, Junjian  |e verfasserin  |4 aut 
700 1 |a Yuan, Haipeng  |e verfasserin  |4 aut 
700 1 |a Wang, Mengyao  |e verfasserin  |4 aut 
700 1 |a Ye, Silin  |e verfasserin  |4 aut 
700 1 |a Jia, Yong-Guang  |e verfasserin  |4 aut 
700 1 |a Sheong, Fu Kit  |e verfasserin  |4 aut 
700 1 |a Wang, Yingjun  |e verfasserin  |4 aut 
700 1 |a Wang, Lin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 35(2023), 49 vom: 02. Dez., Seite e2303253  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnas 
773 1 8 |g volume:35  |g year:2023  |g number:49  |g day:02  |g month:12  |g pages:e2303253 
856 4 0 |u http://dx.doi.org/10.1002/adma.202303253  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 35  |j 2023  |e 49  |b 02  |c 12  |h e2303253