|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM362821941 |
003 |
DE-627 |
005 |
20250305073955.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202306626
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1209.xml
|
035 |
|
|
|a (DE-627)NLM362821941
|
035 |
|
|
|a (NLM)37788420
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yang, Xiaobin
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Engineering In Situ Catalytic Cleaning Membrane Via Prebiotic-Chemistry-Inspired Mineralization
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.12.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 UChicago Argonne, LLC, Operator of Argonne National Laboratory and The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a Pressure-driven membrane separation promises a sustainable energy-water nexus but is hindered by ubiquitous fouling. Natural systems evolved from prebiotic chemistry offer a glimpse of creative solutions. Herein, a prebiotic-chemistry-inspired aminomalononitrile (AMN)/Mn2+ -mediated mineralization method is reported for universally engineering a superhydrophilic hierarchical MnO2 nanocoating to endow hydrophobic polymeric membranes with exceptional catalytic cleaning ability. Green hydrogen peroxide catalytically triggered in-situ cleaning of the mineralized membrane and enabled operando flux recovery to reach 99.8%. The mineralized membrane exhibited a 9-fold higher recovery compared to the unmineralized membrane, which is attributed to active catalytic antifouling coupled with passive hydration antifouling. Electron density differences derived from the precursor interaction during mediated mineralization unveiled an electron-rich bell-like structure with an inner electron-deficient Mn core. This work paves the way to construct multifunctional engineered materials for energy-efficient water treatment as well as for diverse promising applications in catalysis, solar steam generation, biomedicine, and beyond
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a antifouling
|
650 |
|
4 |
|a biomimetic mineralization
|
650 |
|
4 |
|a catalytic cleaning membrane
|
650 |
|
4 |
|a prebiotic chemistry
|
650 |
|
4 |
|a water treatment
|
700 |
1 |
|
|a Wen, Yajie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Li, Yangxue
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Linlin
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Chuyang Y
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Ma, Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Darling, Seth B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shao, Lu
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 35(2023), 49 vom: 24. Dez., Seite e2306626
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:35
|g year:2023
|g number:49
|g day:24
|g month:12
|g pages:e2306626
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202306626
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 35
|j 2023
|e 49
|b 24
|c 12
|h e2306626
|