FineStyle : Semantic-Aware Fine-Grained Motion Style Transfer with Dual Interactive-Flow Fusion

We present FineStyle, a novel framework for motion style transfer that generates expressive human animations with specific styles for virtual reality and vision fields. It incorporates semantic awareness, which improves motion representation and allows for precise and stylish animation generation. E...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on visualization and computer graphics. - 1996. - 29(2023), 11 vom: 03. Nov., Seite 4361-4371
Auteur principal: Song, Wenfeng (Auteur)
Autres auteurs: Jin, Xingliang, Li, Shuai, Chen, Chenglizhao, Hao, Aimin, Hou, Xia
Format: Article en ligne
Langue:English
Publié: 2023
Accès à la collection:IEEE transactions on visualization and computer graphics
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM362819890
003 DE-627
005 20250305073939.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2023.3320216  |2 doi 
028 5 2 |a pubmed25n1208.xml 
035 |a (DE-627)NLM362819890 
035 |a (NLM)37788214 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Song, Wenfeng  |e verfasserin  |4 aut 
245 1 0 |a FineStyle  |b Semantic-Aware Fine-Grained Motion Style Transfer with Dual Interactive-Flow Fusion 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.11.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present FineStyle, a novel framework for motion style transfer that generates expressive human animations with specific styles for virtual reality and vision fields. It incorporates semantic awareness, which improves motion representation and allows for precise and stylish animation generation. Existing methods for motion style transfer have all failed to consider the semantic meaning behind the motion, resulting in limited controls over the generated human animations. To improve, FineStyle introduces a new cross-modality fusion module called Dual Interactive-Flow Fusion (DIFF). As the first attempt, DIFF integrates motion style features and semantic flows, producing semantic-aware style codes for fine-grained motion style transfer. FineStyle uses an innovative two-stage semantic guidance approach that leverages semantic clues to enhance the discriminative power of both semantic and style features. At an early stage, a semantic-guided encoder introduces distinct semantic clues into the style flow. Then, at a fine stage, both flows are further fused interactively, selecting the matched and critical clues from both flows. Extensive experiments demonstrate that FineStyle outperforms state-of-the-art methods in visual quality and controllability. By considering the semantic meaning behind motion style patterns, FineStyle allows for more precise control over motion styles. Source code and model are available on https://github.com/XingliangJin/Fine-Style.git 
650 4 |a Journal Article 
700 1 |a Jin, Xingliang  |e verfasserin  |4 aut 
700 1 |a Li, Shuai  |e verfasserin  |4 aut 
700 1 |a Chen, Chenglizhao  |e verfasserin  |4 aut 
700 1 |a Hao, Aimin  |e verfasserin  |4 aut 
700 1 |a Hou, Xia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 29(2023), 11 vom: 03. Nov., Seite 4361-4371  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:29  |g year:2023  |g number:11  |g day:03  |g month:11  |g pages:4361-4371 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2023.3320216  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2023  |e 11  |b 03  |c 11  |h 4361-4371