Rare Earth Metal Anchored into Nitrogen-Doped Graphene for CO2 Electrocatalytic Reduction to C1 Products

Single-atom catalysts (SACs) are attracting global attention due to their 100% atomic utilization rate and unique properties. Rare-earth-based SACs have shown great potential in the field of electrocatalysis in recent years. In this study, the catalytic performance of four rare earth metals (REMs) a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 39(2023), 41 vom: 17. Okt., Seite 14748-14757
1. Verfasser: Liu, Siying (VerfasserIn)
Weitere Verfasser: Zheng, Desheng, Zhao, Lei, Zhao, Xiuyun, Chen, Xin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Single-atom catalysts (SACs) are attracting global attention due to their 100% atomic utilization rate and unique properties. Rare-earth-based SACs have shown great potential in the field of electrocatalysis in recent years. In this study, the catalytic performance of four rare earth metals (REMs) anchored into N-graphene for the CO2RR is systematically studied by density functional theory. The calculation results of formation energy show that all REMN6-G compounds have favorable stability. In addition, the Gibbs free energy calculation results of all possible elementary reactions show that the *OCHO pathway is the optimal hydrogenation pathway for all catalysts, and they have the same potential determining step (*OCHO + e- + H+ → *HCOOH). Meanwhile, the products of the CO2RR on these catalysts are different, and the product on REM@N6-G (REM = La, Pr, and Nd) is CH4, while the product on Ce@N6-G is CH3OH. In particular, Nd@N6-G exhibits the best catalytic activity in this work, with a very low limiting potential of -0.38 V. These results may guide the development of rare-earth-based SACs for CO2RR
Beschreibung:Date Revised 20.10.2023
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.3c02135