Generalizing Graph Neural Networks on Out-of-Distribution Graphs

Graph Neural Networks (GNNs) are proposed without considering the agnostic distribution shifts between training graphs and testing graphs, inducing the degeneration of the generalization ability of GNNs in Out-Of-Distribution (OOD) settings. The fundamental reason for such degeneration is that most...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2024), 1 vom: 03. Jan., Seite 322-337
Auteur principal: Fan, Shaohua (Auteur)
Autres auteurs: Wang, Xiao, Shi, Chuan, Cui, Peng, Wang, Bai
Format: Article en ligne
Langue:English
Publié: 2024
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article