Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection

We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that emplo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 32(2023) vom: 29., Seite 5423-5437
1. Verfasser: Liu, Zhiyu (VerfasserIn)
Weitere Verfasser: Hayat, Munawar, Yang, Hong, Peng, Duo, Lei, Yinjie
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM362700834
003 DE-627
005 20231226091759.0
007 cr uuu---uuuuu
008 231226s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2023.3318953  |2 doi 
028 5 2 |a pubmed24n1208.xml 
035 |a (DE-627)NLM362700834 
035 |a (NLM)37773910 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Zhiyu  |e verfasserin  |4 aut 
245 1 0 |a Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that employ supervision signals on the output space, our design regularizes the intermediate latent space to enhance discrimination between salient and non-salient objects. We further introduce a contour detection branch to implicitly constrain the semantic boundaries and achieve precise edges of detected salient objects. To enhance the long-range dependencies among local features, we introduce a Cross-Padding Attention Block (CPAB). Extensive experiments on seven benchmark datasets demonstrate that our method not only outperforms existing weakly supervised methods, but is also on par with several fully-supervised state-of-the-art models. Code is available at https://github.com/leolyj/DHFR-SOD 
650 4 |a Journal Article 
700 1 |a Hayat, Munawar  |e verfasserin  |4 aut 
700 1 |a Yang, Hong  |e verfasserin  |4 aut 
700 1 |a Peng, Duo  |e verfasserin  |4 aut 
700 1 |a Lei, Yinjie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 32(2023) vom: 29., Seite 5423-5437  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:32  |g year:2023  |g day:29  |g pages:5423-5437 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2023.3318953  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 32  |j 2023  |b 29  |h 5423-5437