|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM362700834 |
003 |
DE-627 |
005 |
20231226091759.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2023 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2023.3318953
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1208.xml
|
035 |
|
|
|a (DE-627)NLM362700834
|
035 |
|
|
|a (NLM)37773910
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Liu, Zhiyu
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection
|
264 |
|
1 |
|c 2023
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 06.10.2023
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that employ supervision signals on the output space, our design regularizes the intermediate latent space to enhance discrimination between salient and non-salient objects. We further introduce a contour detection branch to implicitly constrain the semantic boundaries and achieve precise edges of detected salient objects. To enhance the long-range dependencies among local features, we introduce a Cross-Padding Attention Block (CPAB). Extensive experiments on seven benchmark datasets demonstrate that our method not only outperforms existing weakly supervised methods, but is also on par with several fully-supervised state-of-the-art models. Code is available at https://github.com/leolyj/DHFR-SOD
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Hayat, Munawar
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Hong
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Peng, Duo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Lei, Yinjie
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g 32(2023) vom: 29., Seite 5423-5437
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2023
|g day:29
|g pages:5423-5437
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2023.3318953
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2023
|b 29
|h 5423-5437
|