|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM36265882X |
003 |
DE-627 |
005 |
20240208231855.0 |
007 |
cr uuu---uuuuu |
008 |
231226s2024 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202307553
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1284.xml
|
035 |
|
|
|a (DE-627)NLM36265882X
|
035 |
|
|
|a (NLM)37769647
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Groß, Michael F
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Dispersion Engineering by Hybridizing the Back-Folded Soft Mode of Monomode Elastic Metamaterials with Stiff Acoustic Modes
|
264 |
|
1 |
|c 2024
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 08.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.
|
520 |
|
|
|a In many cases, the hybridization of two or more excitation modes in solids has led to new and useful dispersion relations of waves. Well-studied examples are phonon polaritons, plasmon polaritons, particle-plasmon polaritons, cavity polaritons, and magnetic resonances at optical frequencies. In all of these cases, the lowest propagating mode couples to a finite-frequency localized resonance. Herein, the unusual metamaterial phonon dispersion relations arising from the hybridization of an ordinary acoustical phonon mode with a back-folded soft or easy phonon mode of a monomode elastic metamaterial are discussed. Conceptually, the single easy mode can have strictly zero wave velocity. In reality, its wave velocity is very much smaller than that of all other modes. Considering polymeric three-dimensional printed elastic monomode metamaterials at ultrasound frequencies, it is shown theoretically and experimentally that the resulting pronounced avoided crossing, with a frequency splitting comparable to the mid-frequency, leads to backward-wave behavior for the lowest band over a broad frequency range, conceptually at zero loss
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a back-folded modes
|
650 |
|
4 |
|a dispersion engineering
|
650 |
|
4 |
|a mode hybridization
|
650 |
|
4 |
|a monomode elastic metamaterials
|
650 |
|
4 |
|a roton-like bands
|
650 |
|
4 |
|a soft modes
|
700 |
1 |
|
|a Schneider, Jonathan L G
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Chen, Yi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kadic, Muamer
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wegener, Martin
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 36(2024), 6 vom: 02. Feb., Seite e2307553
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:36
|g year:2024
|g number:6
|g day:02
|g month:02
|g pages:e2307553
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202307553
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 36
|j 2024
|e 6
|b 02
|c 02
|h e2307553
|