Deep Efficient Continuous Manifold Learning for Time Series Modeling

Modeling non-euclidean data is drawing extensive attention along with the unprecedented successes of deep neural networks in diverse fields. Particularly, a symmetric positive definite matrix is being actively studied in computer vision, signal processing, and medical image analysis, due to its abil...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 46(2023), 1 vom: 28. Jan., Seite 171-184
1. Verfasser: Jeong, Seungwoo (VerfasserIn)
Weitere Verfasser: Ko, Wonjun, Mulyadi, Ahmad Wisnu, Suk, Heung-Il
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2024
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM362650527
003 DE-627
005 20231226091658.0
007 cr uuu---uuuuu
008 231226s2024 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2023.3320125  |2 doi 
028 5 2 |a pubmed24n1208.xml 
035 |a (DE-627)NLM362650527 
035 |a (NLM)37768794 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jeong, Seungwoo  |e verfasserin  |4 aut 
245 1 0 |a Deep Efficient Continuous Manifold Learning for Time Series Modeling 
264 1 |c 2024 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Modeling non-euclidean data is drawing extensive attention along with the unprecedented successes of deep neural networks in diverse fields. Particularly, a symmetric positive definite matrix is being actively studied in computer vision, signal processing, and medical image analysis, due to its ability to learn beneficial statistical representations. However, owing to its rigid constraints, it remains challenging to optimization problems and inefficient computational costs, especially, when incorporating it with a deep learning framework. In this paper, we propose a framework to exploit a diffeomorphism mapping between Riemannian manifolds and a Cholesky space, by which it becomes feasible not only to efficiently solve optimization problems but also to greatly reduce computation costs. Further, for dynamic modeling of time-series data, we devise a continuous manifold learning method by systematically integrating a manifold ordinary differential equation and a gated recurrent neural network. It is worth noting that due to the nice parameterization of matrices in a Cholesky space, training our proposed network equipped with Riemannian geometric metrics is straightforward. We demonstrate through experiments over regular and irregular time-series datasets that our proposed model can be efficiently and reliably trained and outperforms existing manifold methods and state-of-the-art methods in various time-series tasks 
650 4 |a Journal Article 
700 1 |a Ko, Wonjun  |e verfasserin  |4 aut 
700 1 |a Mulyadi, Ahmad Wisnu  |e verfasserin  |4 aut 
700 1 |a Suk, Heung-Il  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 46(2023), 1 vom: 28. Jan., Seite 171-184  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:46  |g year:2023  |g number:1  |g day:28  |g month:01  |g pages:171-184 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2023.3320125  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 46  |j 2023  |e 1  |b 28  |c 01  |h 171-184